Famous Scientists

  • Home
  • Top 100 Scientists
  • List of Scientists
  • Blog

Sophie Germain

Sophie Germain

Lived 1776 – 1831.

Sophie Germain was a wholly self-taught mathematical genius who began her career pretending to be a man, because the social conventions of her time prevented women from following intellectual careers.

Her theory of surface vibrations brought her the prestigious Paris Academy of Sciences Prize in 1816, the first ever won by a woman.

She made some of the most significant progress on proving Fermat’s Last Theorem until it was finally proven by Andrew Wiles 170 years later, in 1995.

Advertisements

Beginnings

Marie-Sophie Germain was born in Paris, France on April 1, 1776, the second of three sisters.

Her father was Ambroise-Francois Germain, whose family had been in business for several generations. Business was good and the Germain family was growing increasingly affluent. In addition to his business, which was either gold or silk – history is uncertain – he was also politically active, as an elected representative.

How do you solve a problem like Maria Marie?

Marie-Sophie was not the only Marie in the Germain household. The name was a family favorite. Her mother and older sister were both named Marie-Madeleine.

When you have three Maries in one home, something’s got to give. In this case, to avoid confusion, the main character in our tale, Marie-Sophie, was known to everyone as Sophie.

Sophie’s younger sister’s name was Angélique-Ambroise.

Revolution

During Sophie’s childhood, Paris and France were in a state of turmoil. One of the main causes of the trouble lay close to the Arctic Circle in far-distant Iceland. In 1783-1784, when Sophie was seven, the Laki volcanic eruption disgorged 120 million tons of sulfur dioxide into Earth’s atmosphere over an eight-month period.

iceland-eruption-2010

Dust ejected by Icelandic volcanic eruptions caused major disruption to European air travel in 2010, but, unlike the 1783-84 event, had little effect on the weather. Image by Boaworm.

Laki’s eruption plunged the Northern Hemisphere into several years of dramatic weather reversals, including heatwaves, droughts, thunderstorms, hailstorms, and bone-chilling winters. The bad weather caused spoiled harvests, rising food prices, and widespread hunger.

The French Government, already heavily in debt from wars, grew increasingly unpopular. In 1789, the French Revolution erupted.

Every Cloud

With the streets of revolutionary Paris unsafe, 13-year-old Sophie remained indoors reading – she might have preferred this anyway, because she was rather shy.

Sophie Germaine

Sophie Germaine, age 14.

Her father was an educated man who kept an extensive library. Sophie picked up Volume 1 of Jean-Étienne Montucla’s History of Mathematics.

Quickly she was captivated by the story of Archimedes, the towering genius of antiquity. Reading about his life and particularly his death fascinated her. She read that while the Roman Army invaded and pillaged his city of Syracuse, Archimedes was so immersed in geometry that he ignored the orders of a Roman soldier, who killed him.

Sophie was amazed that anyone could be so overwhelmingly and even fatally interested in mathematics. She decided mathematics was something she needed to know more about.

Fortunately, she was able to pursue her newly kindled interest with the help of her father’s books.

Sophie’s discovery of mathematics is similar to that of André-Marie Ampère, born just a year before Sophie, who also discovered a passion for mathematics in his father’s library.

Mathematics and Ceilings

As a liberal man, a man of the Enlightenment, Sophie’s father would have ensured his daughters were educated. It would be unthinkable for them to be illiterate, uninformed about art & music, or unsophisticated. Such women would find it difficult to find socially acceptable husbands. (Sophie’s sisters both married solid, middle-class, professional husbands.)

However, etiquette dictated that girls’ education was limited; it had a ceiling. Girls from affluent families should be able to take part in intelligent conversations, but they should not rise to intellectual prominence. Captivated by mathematics, Sophie now began chipping away at the time-honored ceiling.

The Empire Strikes Back

Sophie’s parents became increasingly unhappy about her growing obsession with mathematics. Too many of her waking hours were spent with her head in books. They reasoned that if her room were unlit and unheated she would be forced to stop work, get into bed, and sleep. So, believing they were acting for the best, Sophie was denied a fire to heat her room and deprived of candles to read by.

The Empire Surrenders

When her parents found Sophie asleep in a chair in her room early one winter morning huddled under a blanket with a mathematics book in front of her, a burned-out candle from a hidden cache beside her, and her inkwell frozen by the intense cold, they felt too distressed to continue with their scheme – Sophie was chilled to the bone. They surrendered. In future, their eccentric daughter would be allowed to spend as much time as she liked on mathematics.

New Heights

Sophie began studying mathematics seriously at age 13, using Étienne Bezout’s mathematics textbook Traité d’Arithmétique. From its pages she learned about long-division, proportions, fractions, and logarithms. Within a few years, Sophie had taught herself calculus. She then got to grips with difficult mathematical works by Isaac Newton and Leonhard Euler written in Latin, a language she had to teach herself.

She blossomed as a mathematician, rising high above the modest ceiling society placed on girls’ intellectual ambitions. Moreover, she did not restrict her self-schooling to mathematics – she read everything she could get her hands on, particularly books about psychology and philosophy.

New Horizons

In 1794, the year Sophie Germain celebrated her 18th birthday, an exciting new college opened its doors in Paris – the École Polytechnique. Regrettably, although the rallying cry of the French Revolution had been “Liberté, fraternité, égalité, ou la mort” (liberty, fraternity, equality, or death), women were denied the liberty and equality to attend this new college.

On the other hand, notes from the lectures at the École Polytechnique were made freely available to non-students. Germain obtained these lecture notes, particularly enjoying the great mathematician Joseph-Louis Lagrange’s course in analysis and the chemistry course given by Antoine Fourcroy.

Sophie’s Secret

Germain worked hard to understand Joseph-Louis Lagrange’s analysis course, but was unsure about her ranking as a mathematician. She needed to get her assignments assessed. By arrangement with Antoine-August LeBlanc, a student at the École, Germain began submitting written work in LeBlanc’s name to Lagrange.

Joseph-Louis Lagrang

Joseph-Louis Lagrange discovered Germain’s true identity.

Somehow Lagrange discovered that the work submitted by LeBlanc was not his own. It is easy to imagine a scene in which the 58-year-old master mathematician starts an enthusiastic discussion with his student LeBlanc, only to realize that this young man could not possibly have produced the startlingly original mathematics he had submitted.

Lagrange learned that LeBlanc’s work had actually been done by Sophie Germain. He arranged to visit Germain and offered her praise for her mathematical talent. Lagrange also spread the word about the brilliant young mathematician he had met, which resulted in other mathematicians and academics visiting her. While most of these visits were productive and pleasant, not all ended happily.

The astronomer Jérôme Lalande sent an apology to Germain for incurring her wrath. It seems that rather than treat her as a serious scholar, he encouraged her to read a simple astronomy book he had written to help girls understand the subject.

Famous but Fragmented

Germain’s name became well-known in the intellectual circles of Paris and the city’s academics thought kindly of her. Nevertheless, everything in her garden was far from rosy:

  • She needed postgraduate assignments to give her a rounded mathematical education. However, women were still not allowed into the city’s colleges, so Germain’s education was fragmented, leaving significant gaps in her mathematical armory.
  • Social conventions made it difficult for her, as a single woman, to meet other mathematicians – her interactions were nearly all by mail.
  • She needed robust criticism of her work, but most mathematicians would have felt it wrong to potentially hurt the feelings of a young woman by criticizing her efforts.

These factors tended to disadvantage Germain compared with her mathematical contemporaries. Her situation was similar in some ways to that of Pierre de Fermat in an earlier age who taught himself mathematics from library books and kept in contact with other mathematicians by mail.

Number Theory

1798 and 1801 were big years for mathematics and for Germain. In the first of these years another great French mathematician, Adrien-Marie Legendre, published his work on number theory: Essai sur la Théorie des Nombres ; in the second, Carl Friedrich Gauss, who was a year younger than Germain, published the greatest work on number theory ever written: Disquisitiones Arithmeticae.

Germain was inspired by these works, and pushed herself to new heights in number theory. She exchanged many letters with Legendre.

In 1804, Germain sent Gauss some of her original research, including progress with Fermat’s Last Theorem. Once more, rather than using her own name, she used LeBlanc’s, describing herself as an ‘enthusiastic amateur.’ (The real LeBlanc was now actually dead.)

Gauss was impressed enough by Monsieur LeBlanc’s work to begin a correspondence with ‘him.’ Although he often took months to reply to LeBlanc’s letters, he was clearly impressed by ‘his’ work.

Carl Friedrich Gauss“Recently I had the pleasure to receive a letter from LeBlanc, a young mathematician in Paris, who made himself enthusiastically familiar with higher mathematics and showed how deeply he penetrated into my Disquisitiones Arithmeticae.”
Carl Friedrich Gauss
Letter to Heinrich Olbers, 1804
 

Please Don’t Kill Gauss

In 1806, France’s army invaded Brunswick, where Gauss lived. Horrified that Gauss might suffer the same fate as Archimedes, Germain contacted General Pernety, a friend of her family, requesting that he protect Gauss.

The General checked that Gauss was safe, telling him that Miss Germain in Paris was concerned for him. This confused Gauss, because he did not know a Miss Germain in Paris. Germain, when told about Gauss’s confusion, sent him a letter revealing that she and LeBlanc were actually the same person. Gauss replied:

Carl Friedrich Gauss“But how can I describe my astonishment and admiration on seeing my esteemed correspondent Monsieur LeBlanc metamorphosed… But when a woman, because of her sex, our customs and prejudices, encounters infinitely more obstacles than men, in familiarizing herself with their knotty problems, yet overcomes these fetters and penetrates that which is most hidden, she doubtless has the most noble courage, extraordinary talent, and superior genius.”
Carl Friedrich Gauss
Letter to Sophie Germain, 1807
 

The Mathematics of Sophie Germain

The Singing Plate and the Paris Prize

Chladni Plate

Chladni produced many different patterns in sand when he used a bow and his fingers to produce pure musical notes from flat plates.

In 1808, Ernst Chladni showed a fascinated audience of Parisian scholars how a violin bow could produce music and visible patterns in sand on a flat glass plate.

His audience already knew that musical notes and sound in general were caused by vibrations. Vibration of stringed instruments was mathematically understood.

Chladni was now showing France’s scientific elite something mathematically more challenging – a vibrating plate. The sand revealed that only certain areas of the plate vibrated, accumulating only where the plate was motionless.

At first sight, understanding vibrations on a plate of glass might seem rather pointless. However, the principles of vibration are vital in physics and engineering – for example, in aircraft design wing vibration must be fully understood to prevent disaster.

Chladni patterns

Chladni patterns. Sand builds up at nodes where there is no vibration.

In 1809, Emperor Napoleon Bonaparte offered a prize for the development of a mathematical theory of elastic surfaces such as the vibrating plates demonstrated by Chladni. The deadline for entries was October 1, 1811.

The prize caught Germain’s imagination:

Sophie Germain“As soon as M. Chladni’s first experiments were known to me, it seemed to me that analysis could determine the laws by which they are controlled.”
Sophie Germain
Recherches sur la Théorie des Surfaces Élastiques, 1826
 

Analysis is the mathematics of limits, predominantly calculus. Leonhard Euler had already successfully described the mathematics of a vibrating rod, requiring one-dimensional analysis. Germain did not at first realize that working in two-dimensions to describe the vibrating plate required much more complicated analysis. Her friend Lagrange discouraged most mathematicians from even attempting to win the prize by declaring a solution would require a new system of analysis.

Germain’s approach was to apply Lagrange’s calculus of variations to Euler’s earlier results.

Although her ideas were good, her command of the calculus of variations was not perfect, which led to errors. With the assistance of Legendre, she worked out a solution and submitted it in September 1811. Hers was the only entry. However, the judges decided Germain’s entry did not meet their requirements and extended the competition for another two years.

Germain tried again and received an honorable mention for her next entry, but it had too many errors to succeed. She tried a third time and, on January 8, 1816, she was awarded the enormously prestigious Paris Academy of Sciences Prize, a one kilogram gold medal. Germain, now 39, was the first woman to win one.

In 1821, Germain published her research on elastic surfaces with the title: Récherches sur la théorie des surfaces élastiques, introducing a new concept to mathematical physics, still in use today, the mean curvature.

Fermat’s Last Theorem – Germain’s Best Work

In 1637, one of history’s greatest and most enigmatic mathematicians, Pierre de Fermat, wrote an equation similar to Pythagoras’s theorem for right-angled triangles. Fermat wrote his equation in words because he was not aware of Thomas Harriot’s invention of symbolic algebra. We shall use symbols:

Fermat's last theorem

If n=2, we have Pythagoras’s theorem, which has an infinite number of whole number solutions, the most famous example of which is the 3-4-5 triangle: x=3, y=4, z=5.

Fermat’s Last Theorem claims that if n is a whole number bigger than 2, the equation has no whole number solutions for x, y and z. Fermat himself left proof that he was correct for n=4. As a bonus, Fermat’s proof of his theorem for n=4 meant that only cases where n was an odd number were left to tackle. Fermat claimed to have proved it for all values of n, but famously said that the margin of his book was too small to write his wonderful proof.

Over a century later, Leonhard Euler proved Fermat was correct for n=3, although Euler’s proof is not quite rigorous enough for modern mathematicians.

Germain’s Grand Design

Germain saw little point in trying to prove Fermat’s Last Theorem for any individual number. Proving it for whole classes of numbers looked like a more fruitful approach. In this she had an advantage over previous mathematicians. As Gauss had acknowledged, she had penetrated deeply into the advances in number theory he described in Disquisitiones Arithmeticae. Fermat’s Last Theorem was also her favorite work:

Sophie Germain“I will give you a sense of my absorption with this area of research by admitting to you that even without any hope of success, I still prefer it to other work which might interest me while I think about it, and which is sure to yield results.”
Sophie Germain
Letter to Gauss, 1819
 

In 1819, Germain informed Gauss that using her own general method, she could show that for n=5 there were no solutions to Fermat’s Last Theorem unless x, y, and z were truly enormous numbers. She added ruefully that enormous was not good enough; a mathematical proof must hold true for all numbers. Unfortunately, Gauss did not reply – he was now busy in other fields.

Sophie Germain“You can easily imagine that I have been able to prove that this equation is only possible for numbers whose size frightens the imagination… but that is still not enough; it takes the infinite and not merely the very large.”
Sophie Germain
Letter to Gauss, 1819
 

In fact, as she acknowledged in the quote above, her method was ultimately not viable.

Germain’s Theorem

Out of the ashes of Germain’s grand design rose the phoenix of Germain’s theorem, described by Legendre as ‘ingenious.’ The world learned of Germain’s theorem from a footnote in Legendre’s 1825 treatise on Fermat’s Last Theorem – a work in which he actually verified Fermat’s Last Theorem for n=5.

Sophie Germain’s Theorem

For an odd prime exponent p, if there exists an auxiliary prime Θ such that there are no two nonzero consecutive pth powers modulo Θ, nor is p itself a pth power modulo Θ, then in any solution to the Fermat equation zp = xp + yp, one of x, y, or z must be divisible by p2.

Legendre tells us that Germain, by hand calculation, used her own theorem to verify Fermat’s Last Theorem for p less than 100. Legendre repeated and verified her calculations. Using Germain’s theorem, Leonard Dickson showed in 1920 that Fermat’s theorem is true for p less than 1,700.

Beyond Germain’s Theorem

After reviewing Germain’s unpublished manuscripts, in 2010, Reinhard Laubenbacher and David Pengelley wrote that Germain’s research on Fermat’s Last Theorem had been much more meaningful than previously believed:

“The supporting algorithms she invented for this plan are based on ideas and results discovered independently only much later by others… comparison of her work with that of Legendre and later researchers, displays bold, sophisticated, multifaceted, independent work on Fermat’s Last Theorem, much more extensive than the single result, named Sophie Germain’s Theorem.”

Over 170 years later, in 1995, Andrew Wiles finally proved Fermat’s Last Theorem for all numbers.

Some Personal Details and the End

Germain never married and had no children. Her mathematical research was financially supported by her parents. She also wrote philosophical works.

People who knew her reported that she was rather shy and modest, a pleasant person to talk to.

In 1829, she discovered she was suffering from breast cancer. It claimed her life on June 27, 1831, in Paris, where she died age 55.

Sophie Germain was buried in Paris’s Père Lachaise Cemetery. Her resting place has a strange resonance with that of her mathematical hero Archimedes. After his burial, Archimedes’ tomb fell into disrepair. Cicero, the Roman Governor of Sicily, found that it had become overgrown with weeds and bushes, which he ordered to be cleared. Similarly, Germain’s grave fell into a state of disrepair, before it too was rediscovered and repaired. Archimedes tomb is now lost, but Germain’s grave can still be seen in Paris.

Advertisements

Author of this page: The Doc
Images of Germain created or digitally enhanced and colorized by this website.
© All rights reserved.

Cite this Page

Please use the following MLA compliant citation:

"Sophie Germain." Famous Scientists. famousscientists.org. 18 Jun. 2017. Web.  
<www.famousscientists.org/sophie-germain/>.

Published by FamousScientists.org

Further Reading
H. J. Mozans
Women in Science: With an Introductory Chapter on Women’s Long Struggle for Things of the Mind
D. Appleton and Company, New York and London, 1913

Mary W. Gray
Complexities : Women in Mathematics / edited by Bettye Anne Case, Anne M. Leggett
Princeton University Press, pp. 68-74, 2005

Andrea Del Centina
Letters of Sophie Germain Preserved in Florence
Historia Mathematica Vol. 32, pp. 60–75, 2005

Reinhard Laubenbacher and David Pengelley
“Voici ce que j’ai trouvé:” Sophie Germain’s grand plan to prove Fermat’s Last Theorem
arXiv:0801.1809v3 [math.HO], July 12, 2010

L.L. Bucciarelli, N. Dworsky
Sophie Germain: An Essay in the History of the Theory of Elasticity
Springer Science & Business Media, 2012

Creative Commons
Image of Icelandic volcanic eruptions by Boaworm under the Creative Commons Attribution 3.0 Unported license.

More from FamousScientists.org:
  • Joseph-Louis Lagrange
    Joseph-Louis Lagrange
  • Carl Friedrich Gauss
    Carl Friedrich Gauss
  • Mary Somerville
    Mary Somerville
  • Leonhard Euler
    Leonhard Euler
Advertisements

Search Famous Scientists

Scientist of the Week

  • Linda Buck: Discovered how we smell things

Recent Scientists of the Week

  • Jan Ingenhousz: Discovered photosynthesis
  • Barry Marshall: Overturned the Medical Establishment
  • Linus Pauling: Maverick Giant of Chemistry
  • William Röntgen: The Discovery of X-rays
  • Howard Florey: Brought penicillin to the world
  • Henrietta Leavitt: The key to the size of the universe
  • Archimedes: A mind beyond his time
  • Stanley Milgram: The infamous Obedience Experiments
  • C. V. Raman: Color change allows harm-free health check of living cells
  • Rosalind Franklin: Shape-shifting DNA
  • Robert Boyle: A new science is born: chemistry
  • Carl Woese: Rewrote Earth’s history of life
  • Alfred Wegener: Shunned after he discovered that continents move
  • Henri Poincaré: Is the solar system stable?
  • Polly Matzinger: The dog whisperer who rewrote our immune system’s rules
  • Otto Guericke: In the 1600s found that space is a vacuum
  • Alister Hardy: Aquatic ape theory: our species evolved in water
  • Elizebeth Friedman: Became the world’s most famous codebreaker
  • Evangelista Torricelli: We live at the bottom of a tremendously heavy sea of air
  • Eudoxus: The first mathematical model of the universe
  • James Black: Revolutionized drug design with the Beta-blocker
  • Inge Lehmann: Discovered our planet’s solid inner core
  • Chen-Ning Yang: Shattered a fundamental belief of physicists
  • Robert Hooke: Unveiled the spectacular microscopic world
  • Barbara McClintock: A Nobel Prize after years of rejection
  • Pythagoras: The cult of numbers and the need for proof
  • J. J. Thomson: Discovered the electron
  • Johannes Kepler: Solved the mystery of the planets
  • Dmitri Mendeleev: Discovered 8 new chemical elements by thinking
  • Maurice Hilleman: Record breaking inventor of over 40 vaccines
  • Marie Curie: Won – uniquely – both the chemistry & physics Nobel Prizes
  • Jacques Cousteau: Marine pioneer, inventor, Oscar winner
  • Niels Bohr: Founded the bizarre science of quantum mechanics
  • Srinivasa Ramanujan: Untrained genius of mathematics
  • Milutin Milankovic: Proved Earth’s climate is regulated by its orbit
  • Antoine Lavoisier: The giant of chemistry who was executed
  • Emmy Noether: The greatest of female mathematicians, she unlocked a secret of the universe
  • Wilder Penfield: Pioneer of brain surgery; mapped the brain’s functions
  • Charles Nicolle: Eradicated typhus epidemics
  • Samuel Morse: The telegraph and Morse code
  • Jane Goodall: Major discoveries in chimpanzee behavior
  • John Philoponus: 6th century anticipation of Galileo and Newton
  • William Perkin: Youthful curiosity brought the color purple to all
  • Democritus: Atomic theory BC and a universe of diverse inhabited worlds
  • Susumu Tonegawa: Discovered how our bodies make millions of different antibodies
  • Cecilia Payne: Discovered that stars are almost entirely hydrogen and helium

Top 100 Scientists

  • Our Top 100 Scientists

Our Most Popular Scientists

  • Astronomers
  • Biologists & Health Scientists
  • Chemists
  • Geologists and Paleontologists
  • Mathematicians
  • Physicists
  • Scientists in Ancient Times

List of Scientists

  • Alphabetical List

Recent Posts

  • Perfect Numbers and our Tiny Universe
  • What Happens when the Universe chooses its own Units?
  • Hipparchus and the 2000 Year-Old Clue
  • Darwin Pleaded for Cheaper Origin of Species
  • You Will Die For Showing I’m Wrong!
  • Getting Through Hard Times – The Triumph of Stoic Philosophy
  • Johannes Kepler, God, and the Solar System
  • Charles Babbage and the Vengeance of Organ-Grinders
  • Howard Robertson – the Man who Proved Einstein Wrong
  • Susskind, Alice, and Wave-Particle Gullibility




Alphabetical List of Scientists

Louis Agassiz | Maria Gaetana Agnesi | Al-BattaniAbu Nasr Al-Farabi | Alhazen | Jim Al-Khalili | Muhammad ibn Musa al-Khwarizmi | Mihailo Petrovic Alas | Angel Alcala | Salim Ali | Luis Alvarez | Andre Marie Ampère | Anaximander | Carl Anderson | Mary Anning | Virginia Apgar | Archimedes | Agnes Arber | Aristarchus | Aristotle | Svante Arrhenius | Oswald Avery | Amedeo Avogadro | Avicenna

Charles Babbage | Francis Bacon | Alexander Bain | John Logie Baird | Joseph Banks | Ramon Barba | John Bardeen | Charles Barkla | Ibn Battuta | William Bayliss | George Beadle | Arnold Orville Beckman | Henri Becquerel | Emil Adolf Behring | Alexander Graham Bell | Emile Berliner | Claude Bernard | Timothy John Berners-Lee | Daniel Bernoulli | Jacob Berzelius | Henry Bessemer | Hans Bethe | Homi Jehangir Bhabha | Alfred Binet | Clarence Birdseye | Kristian Birkeland | James Black | Elizabeth Blackwell | Alfred Blalock | Katharine Burr Blodgett | Franz Boas | David Bohm | Aage Bohr | Niels Bohr | Ludwig Boltzmann | Max Born | Carl Bosch | Robert Bosch | Jagadish Chandra Bose | Satyendra Nath Bose | Walther Wilhelm Georg Bothe | Robert Boyle | Lawrence Bragg | Tycho Brahe | Brahmagupta | Hennig Brand | Georg Brandt | Wernher Von Braun | J Harlen Bretz | Louis de Broglie | Alexander Brongniart | Robert Brown | Michael E. Brown | Lester R. Brown | Eduard Buchner | Linda Buck | William Buckland | Georges-Louis Leclerc, Comte de Buffon | Robert Bunsen | Luther Burbank | Jocelyn Bell Burnell | Macfarlane Burnet | Thomas Burnet

Benjamin Cabrera | Santiago Ramon y Cajal | Rachel Carson | George Washington Carver | Henry Cavendish | Anders Celsius | James Chadwick | Subrahmanyan Chandrasekhar | Erwin Chargaff | Noam Chomsky | Steven Chu | Leland Clark | John Cockcroft | Arthur Compton | Nicolaus Copernicus | Gerty Theresa Cori | Charles-Augustin de Coulomb | Jacques Cousteau | Brian Cox | Francis Crick | James Croll | Nicholas Culpeper | Marie Curie | Pierre Curie | Georges Cuvier | Adalbert Czerny

Gottlieb Daimler | John Dalton | James Dwight Dana | Charles Darwin | Humphry Davy | Peter Debye | Max Delbruck | Jean Andre Deluc | Democritus | René Descartes | Rudolf Christian Karl Diesel | Diophantus | Paul Dirac | Prokop Divis | Theodosius Dobzhansky | Frank Drake | K. Eric Drexler

John Eccles | Arthur Eddington | Thomas Edison | Paul Ehrlich | Albert Einstein | Gertrude Elion | Empedocles | Eratosthenes | Euclid | Eudoxus | Leonhard Euler

Michael Faraday | Pierre de Fermat | Enrico Fermi | Richard Feynman | Fibonacci – Leonardo of Pisa | Emil Fischer | Ronald Fisher | Alexander Fleming | John Ambrose Fleming | Howard Florey | Henry Ford | Lee De Forest | Dian Fossey | Leon Foucault | Benjamin Franklin | Rosalind Franklin | Sigmund Freud | Elizebeth Smith Friedman

Galen | Galileo Galilei | Francis Galton | Luigi Galvani | George Gamow | Martin Gardner | Carl Friedrich Gauss | Murray Gell-Mann | Sophie Germain | Willard Gibbs | William Gilbert | Sheldon Lee Glashow | Robert Goddard | Maria Goeppert-Mayer | Thomas Gold | Jane Goodall | Stephen Jay Gould | Otto von Guericke

Fritz Haber | Ernst Haeckel | Otto Hahn | Albrecht von Haller | Edmund Halley | Alister Hardy | Thomas Harriot | William Harvey | Stephen Hawking | Otto Haxel | Werner Heisenberg | Hermann von Helmholtz | Jan Baptist von Helmont | Joseph Henry | Caroline Herschel | John Herschel | William Herschel | Gustav Ludwig Hertz | Heinrich Hertz | Karl F. Herzfeld | George de Hevesy | Antony Hewish | David Hilbert | Maurice Hilleman | Hipparchus | Hippocrates | Shintaro Hirase | Dorothy Hodgkin | Robert Hooke | Frederick Gowland Hopkins | William Hopkins | Grace Murray Hopper | Frank Hornby | Jack Horner | Bernardo Houssay | Fred Hoyle | Edwin Hubble | Alexander von Humboldt | Zora Neale Hurston | James Hutton | Christiaan Huygens | Hypatia

Ernesto Illy | Jan Ingenhousz | Ernst Ising | Keisuke Ito

Mae Carol Jemison | Edward Jenner | J. Hans D. Jensen | Irene Joliot-Curie | James Prescott Joule | Percy Lavon Julian

Michio Kaku | Heike Kamerlingh Onnes | Pyotr Kapitsa | Friedrich August Kekulé | Frances Kelsey | Pearl Kendrick | Johannes Kepler | Abdul Qadeer Khan | Omar Khayyam | Alfred Kinsey | Gustav Kirchoff | Martin Klaproth | Robert Koch | Emil Kraepelin | Thomas Kuhn | Stephanie Kwolek

Joseph-Louis Lagrange | Jean-Baptiste Lamarck | Hedy Lamarr | Edwin Herbert Land | Karl Landsteiner | Pierre-Simon Laplace | Max von Laue | Antoine Lavoisier | Ernest Lawrence | Henrietta Leavitt | Antonie van Leeuwenhoek | Inge Lehmann | Gottfried Leibniz | Georges Lemaître | Leonardo da Vinci | Niccolo Leoniceno | Aldo Leopold | Rita Levi-Montalcini | Claude Levi-Strauss | Willard Frank Libby | Justus von Liebig | Carolus Linnaeus | Joseph Lister | John Locke | Hendrik Antoon Lorentz | Konrad Lorenz | Ada Lovelace | Percival Lowell | Lucretius | Charles Lyell | Trofim Lysenko

Ernst Mach | Marcello Malpighi | Jane Marcet | Guglielmo Marconi | Lynn Margulis | Barry Marshall | Polly Matzinger | Matthew Maury | James Clerk Maxwell | Ernst Mayr | Barbara McClintock | Lise Meitner | Gregor Mendel | Dmitri Mendeleev | Franz Mesmer | Antonio Meucci | John Michell | Albert Abraham Michelson | Thomas Midgeley Jr. | Milutin Milankovic | Maria Mitchell | Mario Molina | Thomas Hunt Morgan | Samuel Morse | Henry Moseley

Ukichiro Nakaya | John Napier | Giulio Natta | John Needham | John von Neumann | Thomas Newcomen | Isaac Newton | Charles Nicolle | Florence Nightingale | Tim Noakes | Alfred Nobel | Emmy Noether | Christiane Nusslein-Volhard | Bill Nye

Hans Christian Oersted | Georg Ohm | J. Robert Oppenheimer | Wilhelm Ostwald | William Oughtred

Blaise Pascal | Louis Pasteur | Wolfgang Ernst Pauli | Linus Pauling | Randy Pausch | Ivan Pavlov | Cecilia Payne-Gaposchkin | Wilder Penfield | Marguerite Perey | William Perkin | John Philoponus | Jean Piaget | Philippe Pinel | Max Planck | Pliny the Elder | Henri Poincaré | Karl Popper | Beatrix Potter | Joseph Priestley | Proclus | Claudius Ptolemy | Pythagoras

Adolphe Quetelet | Harriet Quimby | Thabit ibn Qurra

C. V. Raman | Srinivasa Ramanujan | William Ramsay | John Ray | Prafulla Chandra Ray | Francesco Redi | Sally Ride | Bernhard Riemann | Wilhelm Röntgen | Hermann Rorschach | Ronald Ross | Ibn Rushd | Ernest Rutherford

Carl Sagan | Abdus Salam | Jonas Salk | Frederick Sanger | Alberto Santos-Dumont | Walter Schottky | Erwin Schrödinger | Theodor Schwann | Glenn Seaborg | Hans Selye | Charles Sherrington | Gene Shoemaker | Ernst Werner von Siemens | George Gaylord Simpson | B. F. Skinner | William Smith | Frederick Soddy | Mary Somerville | Arnold Sommerfeld | Hermann Staudinger | Nicolas Steno | Nettie Stevens | William John Swainson | Leo Szilard

Niccolo Tartaglia | Edward Teller | Nikola Tesla | Thales of Miletus | Theon of Alexandria | Benjamin Thompson | J. J. Thomson | William Thomson | Henry David Thoreau | Kip S. Thorne | Clyde Tombaugh | Susumu Tonegawa | Evangelista Torricelli | Charles Townes | Youyou Tu | Alan Turing | Neil deGrasse Tyson

Harold Urey

Craig Venter | Vladimir Vernadsky | Andreas Vesalius | Rudolf Virchow | Artturi Virtanen | Alessandro Volta

Selman Waksman | George Wald | Alfred Russel Wallace | John Wallis | Ernest Walton | James Watson | James Watt | Alfred Wegener | John Archibald Wheeler | Maurice Wilkins | Thomas Willis | E. O. Wilson | Sven Wingqvist | Sergei Winogradsky | Carl Woese | Friedrich Wöhler | Wilbur and Orville Wright | Wilhelm Wundt

Chen-Ning Yang

Ahmed Zewail

Return to top of page

Famous Scientists - Privacy - Contact - About - Content & Imagery © 2023