Famous Scientists

  • Home
  • Top 100 Scientists
  • List of Scientists
  • Blog

Claudius Ptolemy

Claudius Ptolemy

Lived c. 100 – c. 170.

Claudius Ptolemy wrote the Almagest, the work that defined astronomy for over 1,000 years.

The Almagest included a catalogue of over a thousand stars, recording their positions, constellations, and relative brightnesses; and a mathematical model predicting the movements of the planets.

The predictive power of Ptolemy’s planetary model was unsurpassed for almost 1,500 years.

Advertisements

Beginnings

Claudius Ptolemy was born in about the year 100 AD, almost certainly in Egypt. He lived in the metropolis of Alexandria on Egypt’s Mediterranean coast.

Alexandria was built by the Ancient Greeks, but later conquered by the Romans. Claudius is a Roman name and Claudius Ptolemy was a Roman citizen. Ptolemy, however, is a Greek name and Ptolemy wrote in Greek. He was possibly related to the Greek Ptolemy royal dynasty, ousted by the Romans in 30 BC. There is, however, no direct evidence to support a relationship.

We do not know what Ptolemy looked like. Images we have of him were first created over a thousand years after he lived.

Lifetimes of Selected Ancient Greek Scholars

ptolemy-lifetimes-scholars

The Almagest

Ptolemy’s most famous work is the Almagest, an astronomy textbook and star catalogue.

The Almagest was a substantial, ambitious work. It taught its students how to predict the location of any heavenly body at any time from anywhere on Earth using Ptolemy’s mathematical model of planet movements. Ptolemy presented his model’s output in the form of data tables. Using his tables, one could also predict eclipses.

Ptolemy first entitled his book Mathematical Treatise. Almagest is a later fusion of Arabic and Greek words – ‘Al’ is Arabic for ‘the’ and ‘megiste’ is Greek for ‘greatest,’ the title indicating the books status in astronomy.

To create the Almagest, Ptolemy assembled observations of the heavens spanning many hundreds of years, beginning with data compiled in Babylon in 747 BC. He used state-of-the-art mathematics to analyze and interpret the data to create his model.

The Almagest’s Cosmology

The Almagest begins with Ptolemy describing the principles of the cosmos. He says:

  • Religion and Aristotle’s physics are guesswork: only mathematical proof provides certainty.
  • The heavens move like a sphere.
  • The earth and the heavenly bodies are spheres.
  • The earth is at the center of the universe.
  • The earth does not move from its position at the center.
  • The earth’s size is insignificant compared with the universe and, mathematically, the earth can be treated as a point having no volume.
  • There is some merit in the idea that the earth rotates through a complete circle once a day. However, our planet would have to spin so quickly that the effects would be noticeable. Therefore, the earth is stationary and the heavens move.
  • There are two types of motion in the heavens: the stars moving steadily; and the sun, moon, and planets moving in a more complex way.
  • There is no up or down in the universe. What is above us in the heavens depends on where we stand on the earth’s spherical surface.

The Almagest’s Trigonometry

In Ptolemy’s time electronic calculators lay almost two millennia in the future. To help budding astronomers with their calculations, Ptolemy offered them a large table of chords.

Chords are used for trigonometry calculations: they are closely related to sines. Ptolemy probably got his table of chords from an earlier Greek genius: Hipparchus.

The Almagest’s Universe

ptolemy's universe

Ptolemy’s Universe

Ptolemy proposed a universe consisting of nested spheres containing the heavenly bodies.

He incorrectly placed the earth at the center of the universe. He correctly showed the stars as the bodies farthest from Earth. He incorrectly showed Mercury as the planet closest to Earth.

In the Almagest’s star catalog, Ptolemy provided the coordinates and brightnesses of over 1,000 stars and placed them in 48 constellations. Modern scholars believe Ptolemy assembled much of his star catalog from an earlier one compiled by Hipparchus.

The Planet Problem

Although the stars seemed to move with reassuring predictability, the paths of the planets in the night sky were harder to forecast. The very word ‘planet’ comes to us from the Greek word for ‘wandering.’ The Greeks called the planets ‘aster planetes’ – wandering stars.

Below you can see Mars’s path as seen from Earth over a period of about 8 months against the fixed background of stars. Mars, of course, does not really change direction and go backwards.

mars retrograde

To an Earth based observer, the paths followed by planets look strange. When a planet seems to track backwards it is said to undergo retrograde motion.

We see this happen only because we are on a rock orbiting the sun watching another rock in a different orbit around the sun. The two rocks’ relative velocities and locations are changing. When our planet passes Mars, Mars appears to move backward in our night sky – the jargon term is retrograde motion.

If we could travel in a spaceship to a privileged position outside the disc of the solar system, the picture would look much simpler. We would see the planets moving in elliptical orbits around the sun – a fact that was discovered by Johannes Kepler in the early 1600s.

five planets plane

The orbits of the planets look much simpler looking from outside the plane of the solar system than when viewed from the surface of the earth.

The Planet Problem

It is obvious to anyone who watches the night sky that the planets grow brighter and dimmer, implying their distances from Earth change.

However, the Greeks were insistent that the only movement possible in the heavens was circular. Unfortunately, strict circular orbits centered on the earth would not allow the planets’ distances from the earth to vary.

Appolonius of Perga thought about the problem and came up the concepts of the eccentric, the deferent, and the epicycle.

Hipparchus implemented Appolonius’s ideas, modelling the movements of the sun and the moon with moderate success.

Idea 1: The Eccentric

appolonius eccentric earth moonThe first idea was to place the center of a heavenly body’s orbit at a point slightly different from Earth’s center.

This imaginary point is called the eccentric – the white X in the image on the left.

The effect of the eccentric is that as the heavenly body follows its orbit, its distance from the earth varies – sometimes it is close, sometimes farther away. Furthermore, for earth-based observers, the body’s orbital speed varies – something that had also been observed in practice.

Of course, strictly speaking, the eccentric rather than the earth is now at the center of the universe – but the earth is still pretty close!

Idea 2: The Epicycle and Deferent

deferent and epicycleThe next idea was the epicycle and deferent.

The epicycle is shown as the yellow dashed circle on the left. It is a small orbit around an imaginary point. This imaginary point travels around the deferent – the large white dashed circle centered on the earth – at a uniform speed.

The epicycle is quite a neat idea. It allows the planet’s distance from Earth to vary and it also produces retrograde motion.

Ptolemy Solves the Planet Problem

Ptolemy applied Hipparchus’s combined eccentric-epicycle-deferent model to the planets. He found that it did not work very well: it failed to predict the planets’ future movements or agree with their past movements.

ptolemy-epicycle-deferent-eccentric-equant

Ptolemy’s model of planetary motion. The red circle is a planet – Mars, for example.

The Equant

And so Ptolemy added his own innovation to Hipparchus’s model. We’ll never know how many new mathematical models he tried without success or how long he labored for, but eventually he found a brilliant method to improve Hipparchus’s original model

Ptolemy said the deferent does NOT move around the eccentric at a uniform speed.

He added a different imaginary point – the equant – the white dot to the left of the eccentric on the diagram above. The equant is twice as far from Earth as the eccentric. Ptolemy said the deferent moves around the equant at a uniform speed. When viewed from the equant the center of the epicycle sweeps through equal angles in equal times.

Claudius Ptolemy“For the five planets, all the apparent anomalies can be represented by uniform circular motions, since these are proper to the nature of divine beings.”

Claudius Ptolemy
The Almagest
 

Bizarre, but Sophisticated, and Highly Effective

Ptolemy created a situation both bizarre and brilliant in which the center of the epicycle:

  • moves in a circle around the eccentric
  • simultaneously moves at a uniform speed around the equant.

Adding to the weirdness are three imaginary points that exist only in the mind of the mathematician: it is truly a work of magnificent sophistication.

For the modern observer, with modern equipment, the predictions made by Ptolemy’s model are inadequate. In antiquity, however, all observations were made with the naked eye, meaning errors could be rather large. Given these circumstances, Ptolemy’s 150 AD model was rather good. It took almost 1,500 years for a clearly superior model to be found.

We owe the superior model to Johannes Kepler, who discovered the laws of planetary motion after applying a brilliant mathematical analysis to Tycho Brahe’s superlative naked-eye observations of Mars.

Was Ptolemy a Cheat?

Tycho Brahe produced his own star catalog in the late 1500s. Brahe argued that the observations in Ptolemy’s star catalog were actually all made by Hipparchus 300 years earlier, updated by Ptolemy to account for precession of the equinoxes.

In 1817 the astronomer Jean Delambre raised a different concern, again centered around Ptolemy not actually making any observations for himself:

Did Ptolemy do any observing? Are not the observations he tells us he has made just calculations from his tables and some examples that serve for a better understanding of his theories?”

Astronomers can now calculate the precise location in the sky of any heavenly body at any time in history. Ancient astronomers like Ptolemy, however, had only relatively crude instruments. The positions they reported for planets naturally had rather large errors.

When modern astronomers evaluate data for the 747 BC – 150 AD timescale of observations used or made by Ptolemy, they find the positions he reported agree much better with his model than the true positions. The idea is expressed (very) loosely in the image below.

ptolemy model vs actual

The position Ptolemy reported for a planet was often suspiciously close to the position predicted by his model, rather than the planet’s true position.

Scholars are split into two camps on how this should be interpreted.

The increasingly minority view is that Ptolemy was a contemptible scientific cheat. This stance was championed by the physicist Robert Newton in his 1977 book The Crime of Claudius Ptolemy. Newton believed Ptolemy made up a lot of the data in the Almagest to support his mathematical model of planet movements. Newton said:

[The Almagest] has done more damage to astronomy than any other work ever written, and astronomy would be better off if it had never existed.

Other researchers believe Ptolemy used genuine observations, but used them selectively, discarding any observations that did not support his model. Ptolemy may have thought he was doing his readers a favor by removing ‘bad’ data.

He would not have been the only scientist to do this: Ronald Fisher believed Gregor Mendel’s approach to ‘bad data’ may have been similar. Nobody has (yet) written The Crime of Gregor Mendel.

Science historian Gerd Grasshoff wrote:

Scientific theories are refuted when no measurement confirms the prediction… selection of observation values is a very legitimate and even necessary step for the construction of complex theories.

The astronomer Owen Gingerich theorized that Ptolemy used an undisclosed method to ‘correct’ his data.

Whatever the rights and wrongs of Ptolemy’s methods, it’s worth stating again that it took almost 1,500 years for a clearly superior model to be found.

Claudius Ptolemy“We have records of planetary observations only from a time which is recent compared with such a vast enterprise: this makes [very long term] predictions insecure.”

Claudius Ptolemy
The Almagest
 

Predicting the Future

The Almagest was a classic work of astronomy.

Ptolemy also wrote a classic work of astrology. In four parts, it’s known simply as The Four Books. Often it’s referred to by its Greek name Tetrabiblos or Latin name Quadripartitum.

It’s not surprising that Ptolemy was interested in astrology. For millennia astronomy and astrology went hand in hand – the great Kepler made ends meet by casting horoscopes: Ptolemy possibly did too.

Geography and Optics

Ptolemy also wrote major works on the earth’s geography and optics. In Geography he used unreliable data to, not surprisingly, produce rather unreliable maps of the world.

In Optics, Ptolemy described equipment to carry out experiments in optics and discussed his results – an example of ancient experimental science.

Some Personal Details and the End

Very little is known about Claudius Ptolemy’s life other than his works. Whether he married, whether he had children, and where and when he died are unknown.

He died in about the year 170 AD, probably in Alexandria.

Advertisements

Author of this page: The Doc
Images digitally enhanced and colorized by this website. © All rights reserved.

Cite this Page

Please use the following MLA compliant citation:

"Claudius Ptolemy." Famous Scientists. famousscientists.org. 27 Aug. 2016. Web.  
<www.famousscientists.org/claudius-ptolemy/>.

Published by FamousScientists.org

Further Reading
G. J. Toomer
Ptolemy’s Almagest
Springer-Verlag, 1984

Gerd Grasshoff
The History of Ptolemy’s Star Catalogue – Studies in the History of Mathematics and Physical Sciences 14
Springer-Verlag, 1990

Owen Gingerich
The Eye of Heaven: Ptolemy, Copernicus, Kepler
American Institute of Physics, 1993

More from FamousScientists.org:
  • Eratosthenes
    Eratosthenes
  • Hipparchus
    Hipparchus
  • Tycho Brahe
    Tycho Brahe
  • Johannes Kepler
    Johannes Kepler
Advertisements

Search Famous Scientists

Scientist of the Week

  • Linda Buck: Discovered how we smell things

Recent Scientists of the Week

  • Jan Ingenhousz: Discovered photosynthesis
  • Barry Marshall: Overturned the Medical Establishment
  • Linus Pauling: Maverick Giant of Chemistry
  • William Röntgen: The Discovery of X-rays
  • Howard Florey: Brought penicillin to the world
  • Henrietta Leavitt: The key to the size of the universe
  • Archimedes: A mind beyond his time
  • Stanley Milgram: The infamous Obedience Experiments
  • C. V. Raman: Color change allows harm-free health check of living cells
  • Rosalind Franklin: Shape-shifting DNA
  • Robert Boyle: A new science is born: chemistry
  • Carl Woese: Rewrote Earth’s history of life
  • Alfred Wegener: Shunned after he discovered that continents move
  • Henri Poincaré: Is the solar system stable?
  • Polly Matzinger: The dog whisperer who rewrote our immune system’s rules
  • Otto Guericke: In the 1600s found that space is a vacuum
  • Alister Hardy: Aquatic ape theory: our species evolved in water
  • Elizebeth Friedman: Became the world’s most famous codebreaker
  • Evangelista Torricelli: We live at the bottom of a tremendously heavy sea of air
  • Eudoxus: The first mathematical model of the universe
  • James Black: Revolutionized drug design with the Beta-blocker
  • Inge Lehmann: Discovered our planet’s solid inner core
  • Chen-Ning Yang: Shattered a fundamental belief of physicists
  • Robert Hooke: Unveiled the spectacular microscopic world
  • Barbara McClintock: A Nobel Prize after years of rejection
  • Pythagoras: The cult of numbers and the need for proof
  • J. J. Thomson: Discovered the electron
  • Johannes Kepler: Solved the mystery of the planets
  • Dmitri Mendeleev: Discovered 8 new chemical elements by thinking
  • Maurice Hilleman: Record breaking inventor of over 40 vaccines
  • Marie Curie: Won – uniquely – both the chemistry & physics Nobel Prizes
  • Jacques Cousteau: Marine pioneer, inventor, Oscar winner
  • Niels Bohr: Founded the bizarre science of quantum mechanics
  • Srinivasa Ramanujan: Untrained genius of mathematics
  • Milutin Milankovic: Proved Earth’s climate is regulated by its orbit
  • Antoine Lavoisier: The giant of chemistry who was executed
  • Emmy Noether: The greatest of female mathematicians, she unlocked a secret of the universe
  • Wilder Penfield: Pioneer of brain surgery; mapped the brain’s functions
  • Charles Nicolle: Eradicated typhus epidemics
  • Samuel Morse: The telegraph and Morse code
  • Jane Goodall: Major discoveries in chimpanzee behavior
  • John Philoponus: 6th century anticipation of Galileo and Newton
  • William Perkin: Youthful curiosity brought the color purple to all
  • Democritus: Atomic theory BC and a universe of diverse inhabited worlds
  • Susumu Tonegawa: Discovered how our bodies make millions of different antibodies
  • Cecilia Payne: Discovered that stars are almost entirely hydrogen and helium

Top 100 Scientists

  • Our Top 100 Scientists

Our Most Popular Scientists

  • Astronomers
  • Biologists & Health Scientists
  • Chemists
  • Geologists and Paleontologists
  • Mathematicians
  • Physicists
  • Scientists in Ancient Times

List of Scientists

  • Alphabetical List

Recent Posts

  • Perfect Numbers and our Tiny Universe
  • What Happens when the Universe chooses its own Units?
  • Hipparchus and the 2000 Year-Old Clue
  • Darwin Pleaded for Cheaper Origin of Species
  • You Will Die For Showing I’m Wrong!
  • Getting Through Hard Times – The Triumph of Stoic Philosophy
  • Johannes Kepler, God, and the Solar System
  • Charles Babbage and the Vengeance of Organ-Grinders
  • Howard Robertson – the Man who Proved Einstein Wrong
  • Susskind, Alice, and Wave-Particle Gullibility




Alphabetical List of Scientists

Louis Agassiz | Maria Gaetana Agnesi | Al-BattaniAbu Nasr Al-Farabi | Alhazen | Jim Al-Khalili | Muhammad ibn Musa al-Khwarizmi | Mihailo Petrovic Alas | Angel Alcala | Salim Ali | Luis Alvarez | Andre Marie Ampère | Anaximander | Carl Anderson | Mary Anning | Virginia Apgar | Archimedes | Agnes Arber | Aristarchus | Aristotle | Svante Arrhenius | Oswald Avery | Amedeo Avogadro | Avicenna

Charles Babbage | Francis Bacon | Alexander Bain | John Logie Baird | Joseph Banks | Ramon Barba | John Bardeen | Charles Barkla | Ibn Battuta | William Bayliss | George Beadle | Arnold Orville Beckman | Henri Becquerel | Emil Adolf Behring | Alexander Graham Bell | Emile Berliner | Claude Bernard | Timothy John Berners-Lee | Daniel Bernoulli | Jacob Berzelius | Henry Bessemer | Hans Bethe | Homi Jehangir Bhabha | Alfred Binet | Clarence Birdseye | Kristian Birkeland | James Black | Elizabeth Blackwell | Alfred Blalock | Katharine Burr Blodgett | Franz Boas | David Bohm | Aage Bohr | Niels Bohr | Ludwig Boltzmann | Max Born | Carl Bosch | Robert Bosch | Jagadish Chandra Bose | Satyendra Nath Bose | Walther Wilhelm Georg Bothe | Robert Boyle | Lawrence Bragg | Tycho Brahe | Brahmagupta | Hennig Brand | Georg Brandt | Wernher Von Braun | J Harlen Bretz | Louis de Broglie | Alexander Brongniart | Robert Brown | Michael E. Brown | Lester R. Brown | Eduard Buchner | Linda Buck | William Buckland | Georges-Louis Leclerc, Comte de Buffon | Robert Bunsen | Luther Burbank | Jocelyn Bell Burnell | Macfarlane Burnet | Thomas Burnet

Benjamin Cabrera | Santiago Ramon y Cajal | Rachel Carson | George Washington Carver | Henry Cavendish | Anders Celsius | James Chadwick | Subrahmanyan Chandrasekhar | Erwin Chargaff | Noam Chomsky | Steven Chu | Leland Clark | John Cockcroft | Arthur Compton | Nicolaus Copernicus | Gerty Theresa Cori | Charles-Augustin de Coulomb | Jacques Cousteau | Brian Cox | Francis Crick | James Croll | Nicholas Culpeper | Marie Curie | Pierre Curie | Georges Cuvier | Adalbert Czerny

Gottlieb Daimler | John Dalton | James Dwight Dana | Charles Darwin | Humphry Davy | Peter Debye | Max Delbruck | Jean Andre Deluc | Democritus | René Descartes | Rudolf Christian Karl Diesel | Diophantus | Paul Dirac | Prokop Divis | Theodosius Dobzhansky | Frank Drake | K. Eric Drexler

John Eccles | Arthur Eddington | Thomas Edison | Paul Ehrlich | Albert Einstein | Gertrude Elion | Empedocles | Eratosthenes | Euclid | Eudoxus | Leonhard Euler

Michael Faraday | Pierre de Fermat | Enrico Fermi | Richard Feynman | Fibonacci – Leonardo of Pisa | Emil Fischer | Ronald Fisher | Alexander Fleming | John Ambrose Fleming | Howard Florey | Henry Ford | Lee De Forest | Dian Fossey | Leon Foucault | Benjamin Franklin | Rosalind Franklin | Sigmund Freud | Elizebeth Smith Friedman

Galen | Galileo Galilei | Francis Galton | Luigi Galvani | George Gamow | Martin Gardner | Carl Friedrich Gauss | Murray Gell-Mann | Sophie Germain | Willard Gibbs | William Gilbert | Sheldon Lee Glashow | Robert Goddard | Maria Goeppert-Mayer | Thomas Gold | Jane Goodall | Stephen Jay Gould | Otto von Guericke

Fritz Haber | Ernst Haeckel | Otto Hahn | Albrecht von Haller | Edmund Halley | Alister Hardy | Thomas Harriot | William Harvey | Stephen Hawking | Otto Haxel | Werner Heisenberg | Hermann von Helmholtz | Jan Baptist von Helmont | Joseph Henry | Caroline Herschel | John Herschel | William Herschel | Gustav Ludwig Hertz | Heinrich Hertz | Karl F. Herzfeld | George de Hevesy | Antony Hewish | David Hilbert | Maurice Hilleman | Hipparchus | Hippocrates | Shintaro Hirase | Dorothy Hodgkin | Robert Hooke | Frederick Gowland Hopkins | William Hopkins | Grace Murray Hopper | Frank Hornby | Jack Horner | Bernardo Houssay | Fred Hoyle | Edwin Hubble | Alexander von Humboldt | Zora Neale Hurston | James Hutton | Christiaan Huygens | Hypatia

Ernesto Illy | Jan Ingenhousz | Ernst Ising | Keisuke Ito

Mae Carol Jemison | Edward Jenner | J. Hans D. Jensen | Irene Joliot-Curie | James Prescott Joule | Percy Lavon Julian

Michio Kaku | Heike Kamerlingh Onnes | Pyotr Kapitsa | Friedrich August Kekulé | Frances Kelsey | Pearl Kendrick | Johannes Kepler | Abdul Qadeer Khan | Omar Khayyam | Alfred Kinsey | Gustav Kirchoff | Martin Klaproth | Robert Koch | Emil Kraepelin | Thomas Kuhn | Stephanie Kwolek

Joseph-Louis Lagrange | Jean-Baptiste Lamarck | Hedy Lamarr | Edwin Herbert Land | Karl Landsteiner | Pierre-Simon Laplace | Max von Laue | Antoine Lavoisier | Ernest Lawrence | Henrietta Leavitt | Antonie van Leeuwenhoek | Inge Lehmann | Gottfried Leibniz | Georges Lemaître | Leonardo da Vinci | Niccolo Leoniceno | Aldo Leopold | Rita Levi-Montalcini | Claude Levi-Strauss | Willard Frank Libby | Justus von Liebig | Carolus Linnaeus | Joseph Lister | John Locke | Hendrik Antoon Lorentz | Konrad Lorenz | Ada Lovelace | Percival Lowell | Lucretius | Charles Lyell | Trofim Lysenko

Ernst Mach | Marcello Malpighi | Jane Marcet | Guglielmo Marconi | Lynn Margulis | Barry Marshall | Polly Matzinger | Matthew Maury | James Clerk Maxwell | Ernst Mayr | Barbara McClintock | Lise Meitner | Gregor Mendel | Dmitri Mendeleev | Franz Mesmer | Antonio Meucci | John Michell | Albert Abraham Michelson | Thomas Midgeley Jr. | Milutin Milankovic | Maria Mitchell | Mario Molina | Thomas Hunt Morgan | Samuel Morse | Henry Moseley

Ukichiro Nakaya | John Napier | Giulio Natta | John Needham | John von Neumann | Thomas Newcomen | Isaac Newton | Charles Nicolle | Florence Nightingale | Tim Noakes | Alfred Nobel | Emmy Noether | Christiane Nusslein-Volhard | Bill Nye

Hans Christian Oersted | Georg Ohm | J. Robert Oppenheimer | Wilhelm Ostwald | William Oughtred

Blaise Pascal | Louis Pasteur | Wolfgang Ernst Pauli | Linus Pauling | Randy Pausch | Ivan Pavlov | Cecilia Payne-Gaposchkin | Wilder Penfield | Marguerite Perey | William Perkin | John Philoponus | Jean Piaget | Philippe Pinel | Max Planck | Pliny the Elder | Henri Poincaré | Karl Popper | Beatrix Potter | Joseph Priestley | Proclus | Claudius Ptolemy | Pythagoras

Adolphe Quetelet | Harriet Quimby | Thabit ibn Qurra

C. V. Raman | Srinivasa Ramanujan | William Ramsay | John Ray | Prafulla Chandra Ray | Francesco Redi | Sally Ride | Bernhard Riemann | Wilhelm Röntgen | Hermann Rorschach | Ronald Ross | Ibn Rushd | Ernest Rutherford

Carl Sagan | Abdus Salam | Jonas Salk | Frederick Sanger | Alberto Santos-Dumont | Walter Schottky | Erwin Schrödinger | Theodor Schwann | Glenn Seaborg | Hans Selye | Charles Sherrington | Gene Shoemaker | Ernst Werner von Siemens | George Gaylord Simpson | B. F. Skinner | William Smith | Frederick Soddy | Mary Somerville | Arnold Sommerfeld | Hermann Staudinger | Nicolas Steno | Nettie Stevens | William John Swainson | Leo Szilard

Niccolo Tartaglia | Edward Teller | Nikola Tesla | Thales of Miletus | Theon of Alexandria | Benjamin Thompson | J. J. Thomson | William Thomson | Henry David Thoreau | Kip S. Thorne | Clyde Tombaugh | Susumu Tonegawa | Evangelista Torricelli | Charles Townes | Youyou Tu | Alan Turing | Neil deGrasse Tyson

Harold Urey

Craig Venter | Vladimir Vernadsky | Andreas Vesalius | Rudolf Virchow | Artturi Virtanen | Alessandro Volta

Selman Waksman | George Wald | Alfred Russel Wallace | John Wallis | Ernest Walton | James Watson | James Watt | Alfred Wegener | John Archibald Wheeler | Maurice Wilkins | Thomas Willis | E. O. Wilson | Sven Wingqvist | Sergei Winogradsky | Carl Woese | Friedrich Wöhler | Wilbur and Orville Wright | Wilhelm Wundt

Chen-Ning Yang

Ahmed Zewail

Return to top of page

Famous Scientists - Privacy - Contact - About - Content & Imagery © 2023