Famous Scientists

  • Home
  • Top 100 Scientists
  • List of Scientists
  • Blog

Emmy Noether

Emmy Noether

Lived 1882 – 1935.

Emmy Noether is probably the greatest female mathematician who has ever lived. She transformed our understanding of the universe with Noether’s theorem and then transformed mathematics with her founding work in abstract algebra.

Advertisements

Beginnings

Amalie Emmy Noether was born in the small university city of Erlangen in Germany on March 23, 1882. Her father, Max Noether, was an eminent professor of mathematics at the University of Erlangen. Her mother was Ida Amalia Kaufmann, whose family were wealthy wholesalers.

Young Emmy was brought up as a typical girl of her era: helping with cooking and running the house – she admitted later she had little aptitude for these sorts of things. Her mother was a skilled pianist, but Emmy did not enjoy piano lessons. Her main passion was dancing.

She also loved mathematics, but she knew that the rules of German society meant she would not be allowed to follow in her father’s footsteps to become a university academic.

After completing high school – she attended the Municipal School for Higher Education of Daughters in Erlangen – she trained to become a school teacher, qualifying in 1900, aged 18, to teach English and French in girls’ schools.

Although a career in teaching offered her financial security, her love of mathematics proved to be too strong. She decided to abandon teaching and apply to the University of Erlangen to observe mathematics lectures there. She could only observe lectures, because women were not permitted to enroll officially at the university.

Between 1900 and 1902 Emmy studied mathematics at Erlangen. In July 1903 she traveled to the city of Nürnberg and passed the matriculation examination allowing her to study mathematics (but not officially enroll) at any German university.

At the Center of the Universe for a Semester

Emmy chose to go for a semester to the University of Göttingen, then home to the most prestigious school of mathematics in the world.

Some of the greatest mathematicians in history had taught and been taught at Göttingen, including Carl Friedrich Gauss and Bernhard Riemann. Emmy attended lectures given by:

  • Hermann Minkowski, the esteemed mathematician who taught Albert Einstein, and
  • David Hilbert, probably the twentieth century’s most outstanding mathematician

Doctorate in Mathematics

In 1904 Emmy was overjoyed to learn that her hometown university, Erlangen, had decided women should be permitted full access.

Paul Gordan

Professor Paul Gordan. Emmy Noether was the only student he ever accepted as a Ph.D. candidate.

She was accepted as a Ph.D. student by the renowned mathematician Paul Gordan. Gordan was 67 when Emmy started work with him. She was the only student he ever accepted as a Ph.D. candidate.

Gordan was known among mathematicians as “the king of invariant theory.” Emmy made exceptional progress in this field, which would later lead to her making a remarkable discovery in physics

In 1907 the 25-year-old Emmy officially became Doctor Noether. Her degree was awarded ‘summa cum laude’ – the highest distinction possible.

Dr. Noether, Mathematics Lecturer

In 1908 Noether was appointed to the position of mathematics lecturer at Erlangen. Unfortunately, it was an unpaid position. This was not especially unusual in Germany for a first lecturing job. The great chemist Robert Bunsen’s first lecturing position was without pay at the University of Göttingen.

Noether’s parents supported her as much as they could through this time, her father recognizing something rather special in his daughter’s capabilities. Nevertheless, her life was a struggle financially.

While working as a lecturer, Noether became fascinated by work David Hilbert had done in Göttingen. The work was more abstract than any she had done at Erlangen. She began stretching and modifying Hilbert’s methods. This was her first heavyweight encounter with abstract algebra, mathematical territory in which she would soon become a powerful innovator.

An Invitation from Hilbert

David Hilbert familiarized himself with Noether’s research; like her father, he recognized her outstanding ability. By this stage in his career Hilbert was concerned mainly with physics, which he believed needed help from the best mathematicians, famously declaring:

david-hilbertPhysics is actually too hard for physicists.

 
David Hilbert
 

In 1913 and 1914 Noether exchanged letters with David Hilbert and his Göttingen colleague Felix Klein discussing Einstein’s Relativity Theory.

In 1915 Hilbert invited her to become a lecturer in Göttingen. Unfortunately this provoked a storm of protest from the history and linguistics faculties who did not think it appropriate that a woman should be teaching men, particularly since Germany was at war – World War 1: 1914 – 1918. Although in general the mathematics and science faculties supported Noether, they could not overcome the opposition from the humanities.

Noether was so eager to join Hilbert’s department in Göttingen that, to soothe Hilbert’s opponents, she agreed not to be formally appointed as a lecturer and to receive no pay. Her father continued supporting her financially (sadly her mother died in 1915) and the lectures she gave were advertised as lectures by Professor Hilbert, with assistance from Dr. E. Noether.

Noether’s Theorem

Hilbert, Einstein, Noether, and the General Theory of Relativity

Einstein visits Göttingen

In 1915 Albert Einstein was struggling mathematically with the formulation of his General Theory of Relativity. He visited David Hilbert in Göttingen and discussed the issues. The result was that Einstein overcame his issues and published his theory before the year end. Hilbert published his own version of the theory, in a different mathematical form.

Einstein’s General Relativity Breaks the Law

Hilbert now discussed one particular problem with Noether. He was deeply concerned that, despite its attractions, Relativity Theory was breaking one of the ‘unbreakable’ conservation laws of physics. He believed that her expertise in invariant theory could be helpful.

Certain quantities in physics may not be created or destroyed, such as energy. Energy can change its form – such as kinetic to thermal – but the total energy stays constant – energy is said to be conserved.

In General Relativity Theory however, there was a problem: it was possible for an object which lost energy by emitting gravity waves to speed up. An object with less energy should slow down, not speed up! It seemed that the energy conservation law was being broken.

A Problem Archimedes Would Have Loved

In the end, the problem was one of symmetry. Over 2000 years earlier the greatest mathematician of antiquity – perhaps ever – had been buried with a carving of a sphere within a cylinder on his tomb. This was Archimedes, who believed his greatest achievement had been discovering and proving the formula for the volume of a sphere.

A perfect sphere is highly symmetrical. Whichever way you rotate it, and from whichever angle you view it, it always looks the same. A cylinder, on the other hand, is less symmetrical; but there is still some symmetry. If you turn it upside down, for example, it looks the same.

Physicists need to use equations whose symmetry is as sphere-like as possible. They last thing they want is equations that change depending on where you are viewing the universe from. In physics jargon we say that we need the laws of the universe to be space invariant. We don’t want them to look different in one city from another or in one galaxy from another.

We also need these laws to be time invariant. We don’t want the laws of physics in an hour’s time to be different from the laws right now.

Noether to the Rescue

Noether hit the ground running in Göttingen. In the year she arrived she proved something remarkable – something so beautiful and profound that it changed the face of physics forever – Noether’s Theorem, which she eventually published in 1918.

Her famous theorem was born when Noether considered Hilbert and Einstein’s problem: that General Relativity Theory seemed to break the law of conservation of energy.

Noether discovered that for every invariant (i.e. symmetry) in the universe there is a conservation law. Equally, for every conservation law in physics, there is an invariant. This is called Noether’s Theorem and it describes a fundamental property of our universe.

For example, Noether’s Theorem shows that the law of conservation of energy is actually a consequence of time invariance in classical physics. Or alternatively that time invariance is caused by the law of conservation of energy.

Another example is that the law of conservation of electric charge is a consequence of the global gauge invariance of the electromagnetic field. And vice versa.

Opening up Strange New Worlds

With Noether’s Theorem, physicists had a very powerful new concept. They could propose abstract symmetries, knowing there must be a conservation law attached to each of them. They could then figure out the conservation law.

Noether’s Theorem has the power to answer questions others cannot – particularly in particle physics. It is important on two levels:

  • it allows practical calculations to be made, and
  • when physicists theorize about any new system they can imagine, Noether’s theorem allows them to gain an insight into the properties of that system and determine if it is possible or should be discarded.
Einstein’s Problem Solved

Noether’s Theorem also solved the worrying puzzle in General Relativity that she had initially set out to solve. Her theorem shows that if matter and gravity are considered to be one unified quantity rather than separate quantities, then there is no violation of any conservation law.

Albert Einstein“Yesterday I received a very interesting paper on invariants from Miss Noether. I’m impressed that these things can be seen in such a general way. It would do the old guard at Göttingen no harm to be sent back to school under Miss Noether. She knows her stuff.”

Albert Einstein, 1879 to 1955
1918
 

Einstein became vocal about Göttingen’s refusal to appoint Noether as a lecturer, telling Felix Klein:

Albert Einstein“After receiving Miss Noether’s new paper, I once again feel that depriving her of a teaching job is a great injustice. I would like vigorous steps to be taken with the Ministry. If you do not think this is possible, then I will go the trouble of doing it myself.”

Albert Einstein, 1879 to 1955
1918
 

At last: some career progress

With the end of World War 1, in which so many men had died or been badly injured, came a change in German society. It became acceptable for women to work in occupations previously reserved for men. Combined with Noether publishing her brilliant theorem, her academic progress could no longer be blocked.

At the age of 37 she became a tenured lecturer at Göttingen. However, she still received no pay from a now war-impoverished Germany. Her father died when she was 39, leaving her a small inheritance.

It was only when she reached the age of 40 that Noether finally began to receive a salary.

Abstract Algebra

Noether’s Theorem revolutionized physics. In 1919 the full force of her powerful mind turned towards pure mathematics. In this discipline, she was one of the principle architects of abstract algebra. Her name is remembered in many of its concepts, structures, and objects, such as:

Noetherian, Noetherian group, Noetherian induction, Noether normalization, Noether problem, Noetherian ring, Noetherian module, Noetherian scheme, Noetherian space, Albert–Brauer–Hasse–Noether theorem, Lasker–Noether theorem, and Skolem–Noether theorem.

Her work was pivotal in the fields of:

  • mathematical rings – she established the modern axiomatic definition of the commutative ring and developed the basis of commutative ring theory
  • commutative number fields
  • linear transformations
  • noncommutative algebras – Hermann Weyl credited Noether with representations of noncommutative algebras by linear transformations, and their application to the study of commutative number fields and their arithmetics
Hermann Weyl“And one can­not read the scope of her ac­com­plish­ments from the in­di­vidu­al res­ults of her pa­pers alone: she ori­gin­ated above all a new and epoch-mak­ing style of think­ing in al­gebra.”

Hermann Weyl, 1885 to 1955
1935
 
Garrett Birkhoff“If Emmy Noether could have been at the 1950 Congress, she would have felt very proud. Her concept of algebra had become central in contemporary mathematics. And it has continued to inspire algebraists ever since.”

Garrett Birkhoff, 1911 to 1996
The Rise of Modern Algebra, 1976
 

Expulsion from Germany: moving to America

In the early 1930s Noether’s career was finally taking off. Her name was becoming known, and she was receiving invitations to speak at important mathematics conferences.

Then, in January 1933, everything changed. Adolf Hitler came to power. By April of that year Noether, who was Jewish, had been dismissed from the University of Göttingen by order of the Prussian Ministry for Sciences, Art, and Public Education. Sadly, in Nazi ideology Emmy Noether’s religion was of more significance than her extraordinary genius.

Fortunately, her genius was valued elsewhere. Bryn Mawr College in Pennsylvania, USA – a women’s college – obtained a grant from the Rockefeller Foundation and, in October 1933, Emmy Noether sailed on the Bremen to begin work as a lecturer in America.

The following year she also began lecturing at the Institute for Advanced Study in Princeton.

A year later she was dead.

Some Personal Details and The End

Noether was totally devoted to mathematics and talked of little else. She never married and had no children. She cared little for her appearance and less for social conventions; she was not a shrinking violet – she spoke loudly and forcibly. She could be very blunt when she disagreed with anyone on a mathematical issue, and people with whom she disagreed could feel rather bruised mentally.

On the other hand, she was very kind, considerate, and unselfish with everyone, and would go out of her way to ensure her Ph.D. students got full credit for their work, even when she had contributed significantly to it herself.

Only students who were very bright and fully prepared benefited from her rather disorganized lectures – rather like Willard Gibbs‘s students.

To her advanced students, she would present ideas at the forefront of modern mathematics – concepts that she herself was currently working on. This was of great benefit to her best students, who were able to publish research papers based on new, entirely original ideas Noether had been discussing in her lectures. Her best lessons were delivered informally, in conversations, or when out walking with her students, for whom she always had time.

Pavel Aleksandrov“In her… apartment in Göttingen a large group would get together eagerly and often. People of diverse scholarly reputations and positions — from Hilbert, Landau, Brauer and Weyl to the youngest students — would gather at her home and feel relaxed and unconstrained, as in few other scientific salons in Europe. These ‘festive evenings’ in her apartment were arranged on any possible occasion…”

Pavel Aleksandrov, 1896 to 1982
1935
 

Emmy Noether died in Bryn Mawr at the age of 53 on April 14, 1935. She died of complications a few days after an operation to remove a tumor from her pelvis. The cause of death was possibly a viral infection. Her ashes were buried under the cloisters of Bryn Mawr College’s M. Carey Thomas Library.

Albert Einstein“In the judgment of the most competent living mathematicians, Fräulein Noether was the most significant creative mathematical genius thus far produced since the higher education of women began. In the realm of algebra, in which the most gifted mathematicians have been busy for centuries, she discovered methods which have proved of enormous importance in the development of the present-day younger generation of mathematicians.”

Albert Einstein, 1879 to 1955
1935
 
Hermann Weyl“…you were a great woman mathematician – I have no reservations in calling you the greatest that history has known.”

Hermann Weyl, 1885 to 1955
1935
 
Advertisements

Author of this page: The Doc
Images of scientists digitally enhanced and colorized by this website. © All rights reserved.

Cite this Page

Please use the following MLA compliant citation:

"Emmy Noether." Famous Scientists. famousscientists.org. 17 Aug. 2015. Web.  
<www.famousscientists.org/emmy-noether/>.

Published by FamousScientists.org

Further Reading
Charlene Morrow, Teri Perl
Notable Women in Mathematics
Greenwood Publishing Group, 1998

Bertram E. Schwarzbach, Yvette Kosmann-Schwarzbach
The Noether Theorems
Springer Science & Business Media, 2010

Auguste Dick
Translated by H. I. Bloclier
Emmy Noether: 1882-1935
Birkhäuser, 1981

Creative Commons
The Image of Pavel Aleksandrov is by Konrad Jacobs, Erlangen and sourced from Mathematisches Forschungsinstitut Oberwolfach, Creative Commons License Attribution-Share Alike 2.0 Germany

More from FamousScientists.org:
  • David Hilbert
    David Hilbert
  • carl-friedrich-gauss
    Carl Friedrich Gauss
  • bernhard riemann
    Bernhard Riemann
  • Albert Einstein
    Albert Einstein
Advertisements

Search Famous Scientists

Scientist of the Week

  • Linda Buck: Discovered how we smell things

Recent Scientists of the Week

  • Jan Ingenhousz: Discovered photosynthesis
  • Barry Marshall: Overturned the Medical Establishment
  • Linus Pauling: Maverick Giant of Chemistry
  • William Röntgen: The Discovery of X-rays
  • Howard Florey: Brought penicillin to the world
  • Henrietta Leavitt: The key to the size of the universe
  • Archimedes: A mind beyond his time
  • Stanley Milgram: The infamous Obedience Experiments
  • C. V. Raman: Color change allows harm-free health check of living cells
  • Rosalind Franklin: Shape-shifting DNA
  • Robert Boyle: A new science is born: chemistry
  • Carl Woese: Rewrote Earth’s history of life
  • Alfred Wegener: Shunned after he discovered that continents move
  • Henri Poincaré: Is the solar system stable?
  • Polly Matzinger: The dog whisperer who rewrote our immune system’s rules
  • Otto Guericke: In the 1600s found that space is a vacuum
  • Alister Hardy: Aquatic ape theory: our species evolved in water
  • Elizebeth Friedman: Became the world’s most famous codebreaker
  • Evangelista Torricelli: We live at the bottom of a tremendously heavy sea of air
  • Eudoxus: The first mathematical model of the universe
  • James Black: Revolutionized drug design with the Beta-blocker
  • Inge Lehmann: Discovered our planet’s solid inner core
  • Chen-Ning Yang: Shattered a fundamental belief of physicists
  • Robert Hooke: Unveiled the spectacular microscopic world
  • Barbara McClintock: A Nobel Prize after years of rejection
  • Pythagoras: The cult of numbers and the need for proof
  • J. J. Thomson: Discovered the electron
  • Johannes Kepler: Solved the mystery of the planets
  • Dmitri Mendeleev: Discovered 8 new chemical elements by thinking
  • Maurice Hilleman: Record breaking inventor of over 40 vaccines
  • Marie Curie: Won – uniquely – both the chemistry & physics Nobel Prizes
  • Jacques Cousteau: Marine pioneer, inventor, Oscar winner
  • Niels Bohr: Founded the bizarre science of quantum mechanics
  • Srinivasa Ramanujan: Untrained genius of mathematics
  • Milutin Milankovic: Proved Earth’s climate is regulated by its orbit
  • Antoine Lavoisier: The giant of chemistry who was executed
  • Emmy Noether: The greatest of female mathematicians, she unlocked a secret of the universe
  • Wilder Penfield: Pioneer of brain surgery; mapped the brain’s functions
  • Charles Nicolle: Eradicated typhus epidemics
  • Samuel Morse: The telegraph and Morse code
  • Jane Goodall: Major discoveries in chimpanzee behavior
  • John Philoponus: 6th century anticipation of Galileo and Newton
  • William Perkin: Youthful curiosity brought the color purple to all
  • Democritus: Atomic theory BC and a universe of diverse inhabited worlds
  • Susumu Tonegawa: Discovered how our bodies make millions of different antibodies
  • Cecilia Payne: Discovered that stars are almost entirely hydrogen and helium

Top 100 Scientists

  • Our Top 100 Scientists

Our Most Popular Scientists

  • Astronomers
  • Biologists & Health Scientists
  • Chemists
  • Geologists and Paleontologists
  • Mathematicians
  • Physicists
  • Scientists in Ancient Times

List of Scientists

  • Alphabetical List

Recent Posts

  • Perfect Numbers and our Tiny Universe
  • What Happens when the Universe chooses its own Units?
  • Hipparchus and the 2000 Year-Old Clue
  • Darwin Pleaded for Cheaper Origin of Species
  • You Will Die For Showing I’m Wrong!
  • Getting Through Hard Times – The Triumph of Stoic Philosophy
  • Johannes Kepler, God, and the Solar System
  • Charles Babbage and the Vengeance of Organ-Grinders
  • Howard Robertson – the Man who Proved Einstein Wrong
  • Susskind, Alice, and Wave-Particle Gullibility




Alphabetical List of Scientists

Louis Agassiz | Maria Gaetana Agnesi | Al-BattaniAbu Nasr Al-Farabi | Alhazen | Jim Al-Khalili | Muhammad ibn Musa al-Khwarizmi | Mihailo Petrovic Alas | Angel Alcala | Salim Ali | Luis Alvarez | Andre Marie Ampère | Anaximander | Carl Anderson | Mary Anning | Virginia Apgar | Archimedes | Agnes Arber | Aristarchus | Aristotle | Svante Arrhenius | Oswald Avery | Amedeo Avogadro | Avicenna

Charles Babbage | Francis Bacon | Alexander Bain | John Logie Baird | Joseph Banks | Ramon Barba | John Bardeen | Charles Barkla | Ibn Battuta | William Bayliss | George Beadle | Arnold Orville Beckman | Henri Becquerel | Emil Adolf Behring | Alexander Graham Bell | Emile Berliner | Claude Bernard | Timothy John Berners-Lee | Daniel Bernoulli | Jacob Berzelius | Henry Bessemer | Hans Bethe | Homi Jehangir Bhabha | Alfred Binet | Clarence Birdseye | Kristian Birkeland | James Black | Elizabeth Blackwell | Alfred Blalock | Katharine Burr Blodgett | Franz Boas | David Bohm | Aage Bohr | Niels Bohr | Ludwig Boltzmann | Max Born | Carl Bosch | Robert Bosch | Jagadish Chandra Bose | Satyendra Nath Bose | Walther Wilhelm Georg Bothe | Robert Boyle | Lawrence Bragg | Tycho Brahe | Brahmagupta | Hennig Brand | Georg Brandt | Wernher Von Braun | J Harlen Bretz | Louis de Broglie | Alexander Brongniart | Robert Brown | Michael E. Brown | Lester R. Brown | Eduard Buchner | Linda Buck | William Buckland | Georges-Louis Leclerc, Comte de Buffon | Robert Bunsen | Luther Burbank | Jocelyn Bell Burnell | Macfarlane Burnet | Thomas Burnet

Benjamin Cabrera | Santiago Ramon y Cajal | Rachel Carson | George Washington Carver | Henry Cavendish | Anders Celsius | James Chadwick | Subrahmanyan Chandrasekhar | Erwin Chargaff | Noam Chomsky | Steven Chu | Leland Clark | John Cockcroft | Arthur Compton | Nicolaus Copernicus | Gerty Theresa Cori | Charles-Augustin de Coulomb | Jacques Cousteau | Brian Cox | Francis Crick | James Croll | Nicholas Culpeper | Marie Curie | Pierre Curie | Georges Cuvier | Adalbert Czerny

Gottlieb Daimler | John Dalton | James Dwight Dana | Charles Darwin | Humphry Davy | Peter Debye | Max Delbruck | Jean Andre Deluc | Democritus | René Descartes | Rudolf Christian Karl Diesel | Diophantus | Paul Dirac | Prokop Divis | Theodosius Dobzhansky | Frank Drake | K. Eric Drexler

John Eccles | Arthur Eddington | Thomas Edison | Paul Ehrlich | Albert Einstein | Gertrude Elion | Empedocles | Eratosthenes | Euclid | Eudoxus | Leonhard Euler

Michael Faraday | Pierre de Fermat | Enrico Fermi | Richard Feynman | Fibonacci – Leonardo of Pisa | Emil Fischer | Ronald Fisher | Alexander Fleming | John Ambrose Fleming | Howard Florey | Henry Ford | Lee De Forest | Dian Fossey | Leon Foucault | Benjamin Franklin | Rosalind Franklin | Sigmund Freud | Elizebeth Smith Friedman

Galen | Galileo Galilei | Francis Galton | Luigi Galvani | George Gamow | Martin Gardner | Carl Friedrich Gauss | Murray Gell-Mann | Sophie Germain | Willard Gibbs | William Gilbert | Sheldon Lee Glashow | Robert Goddard | Maria Goeppert-Mayer | Thomas Gold | Jane Goodall | Stephen Jay Gould | Otto von Guericke

Fritz Haber | Ernst Haeckel | Otto Hahn | Albrecht von Haller | Edmund Halley | Alister Hardy | Thomas Harriot | William Harvey | Stephen Hawking | Otto Haxel | Werner Heisenberg | Hermann von Helmholtz | Jan Baptist von Helmont | Joseph Henry | Caroline Herschel | John Herschel | William Herschel | Gustav Ludwig Hertz | Heinrich Hertz | Karl F. Herzfeld | George de Hevesy | Antony Hewish | David Hilbert | Maurice Hilleman | Hipparchus | Hippocrates | Shintaro Hirase | Dorothy Hodgkin | Robert Hooke | Frederick Gowland Hopkins | William Hopkins | Grace Murray Hopper | Frank Hornby | Jack Horner | Bernardo Houssay | Fred Hoyle | Edwin Hubble | Alexander von Humboldt | Zora Neale Hurston | James Hutton | Christiaan Huygens | Hypatia

Ernesto Illy | Jan Ingenhousz | Ernst Ising | Keisuke Ito

Mae Carol Jemison | Edward Jenner | J. Hans D. Jensen | Irene Joliot-Curie | James Prescott Joule | Percy Lavon Julian

Michio Kaku | Heike Kamerlingh Onnes | Pyotr Kapitsa | Friedrich August Kekulé | Frances Kelsey | Pearl Kendrick | Johannes Kepler | Abdul Qadeer Khan | Omar Khayyam | Alfred Kinsey | Gustav Kirchoff | Martin Klaproth | Robert Koch | Emil Kraepelin | Thomas Kuhn | Stephanie Kwolek

Joseph-Louis Lagrange | Jean-Baptiste Lamarck | Hedy Lamarr | Edwin Herbert Land | Karl Landsteiner | Pierre-Simon Laplace | Max von Laue | Antoine Lavoisier | Ernest Lawrence | Henrietta Leavitt | Antonie van Leeuwenhoek | Inge Lehmann | Gottfried Leibniz | Georges Lemaître | Leonardo da Vinci | Niccolo Leoniceno | Aldo Leopold | Rita Levi-Montalcini | Claude Levi-Strauss | Willard Frank Libby | Justus von Liebig | Carolus Linnaeus | Joseph Lister | John Locke | Hendrik Antoon Lorentz | Konrad Lorenz | Ada Lovelace | Percival Lowell | Lucretius | Charles Lyell | Trofim Lysenko

Ernst Mach | Marcello Malpighi | Jane Marcet | Guglielmo Marconi | Lynn Margulis | Barry Marshall | Polly Matzinger | Matthew Maury | James Clerk Maxwell | Ernst Mayr | Barbara McClintock | Lise Meitner | Gregor Mendel | Dmitri Mendeleev | Franz Mesmer | Antonio Meucci | John Michell | Albert Abraham Michelson | Thomas Midgeley Jr. | Milutin Milankovic | Maria Mitchell | Mario Molina | Thomas Hunt Morgan | Samuel Morse | Henry Moseley

Ukichiro Nakaya | John Napier | Giulio Natta | John Needham | John von Neumann | Thomas Newcomen | Isaac Newton | Charles Nicolle | Florence Nightingale | Tim Noakes | Alfred Nobel | Emmy Noether | Christiane Nusslein-Volhard | Bill Nye

Hans Christian Oersted | Georg Ohm | J. Robert Oppenheimer | Wilhelm Ostwald | William Oughtred

Blaise Pascal | Louis Pasteur | Wolfgang Ernst Pauli | Linus Pauling | Randy Pausch | Ivan Pavlov | Cecilia Payne-Gaposchkin | Wilder Penfield | Marguerite Perey | William Perkin | John Philoponus | Jean Piaget | Philippe Pinel | Max Planck | Pliny the Elder | Henri Poincaré | Karl Popper | Beatrix Potter | Joseph Priestley | Proclus | Claudius Ptolemy | Pythagoras

Adolphe Quetelet | Harriet Quimby | Thabit ibn Qurra

C. V. Raman | Srinivasa Ramanujan | William Ramsay | John Ray | Prafulla Chandra Ray | Francesco Redi | Sally Ride | Bernhard Riemann | Wilhelm Röntgen | Hermann Rorschach | Ronald Ross | Ibn Rushd | Ernest Rutherford

Carl Sagan | Abdus Salam | Jonas Salk | Frederick Sanger | Alberto Santos-Dumont | Walter Schottky | Erwin Schrödinger | Theodor Schwann | Glenn Seaborg | Hans Selye | Charles Sherrington | Gene Shoemaker | Ernst Werner von Siemens | George Gaylord Simpson | B. F. Skinner | William Smith | Frederick Soddy | Mary Somerville | Arnold Sommerfeld | Hermann Staudinger | Nicolas Steno | Nettie Stevens | William John Swainson | Leo Szilard

Niccolo Tartaglia | Edward Teller | Nikola Tesla | Thales of Miletus | Theon of Alexandria | Benjamin Thompson | J. J. Thomson | William Thomson | Henry David Thoreau | Kip S. Thorne | Clyde Tombaugh | Susumu Tonegawa | Evangelista Torricelli | Charles Townes | Youyou Tu | Alan Turing | Neil deGrasse Tyson

Harold Urey

Craig Venter | Vladimir Vernadsky | Andreas Vesalius | Rudolf Virchow | Artturi Virtanen | Alessandro Volta

Selman Waksman | George Wald | Alfred Russel Wallace | John Wallis | Ernest Walton | James Watson | James Watt | Alfred Wegener | John Archibald Wheeler | Maurice Wilkins | Thomas Willis | E. O. Wilson | Sven Wingqvist | Sergei Winogradsky | Carl Woese | Friedrich Wöhler | Wilbur and Orville Wright | Wilhelm Wundt

Chen-Ning Yang

Ahmed Zewail

Return to top of page

Famous Scientists - Privacy - Contact - About - Content & Imagery © 2025