Famous Scientists

  • Home
  • Top 100 Scientists
  • List of Scientists
  • Blog

C. V. Raman

C. V. Raman

Lived 1888 – 1970.

C. V. Raman discovered that when light interacts with a molecule the light can donate a small amount of energy to the molecule. As a result of this, the light changes its color and the molecule vibrates. The change of color can act as a ‘fingerprint’ for the molecule.

Raman spectroscopy relies on these fingerprints. It is used in laboratories all over the world to identify molecules, to analyze living cells without harming them, and to detect diseases such as cancer.

Advertisements

Beginnings

Chandrasekhara Venkata Raman was born on November 7, 1888 in the city of Trichinopoly, Madras Presidency, British India. Today the city is known as Tiruchirappalli and sits in the Indian state of Tamil Nadu.

Raman’s father was Chandrasekaran Ramanathan Iyer, a teacher of mathematics and physics. His mother was Parvathi Ammal, who was taught to read and write by her husband. At the time of Raman’s birth, the family lived on a low income. Raman was the second of eight children.

Raman’s family were Brahmins, the Hindu caste of priests and scholars. His father, however, paid little attention to religious matters: Raman grew up to share his father’s casual attitude to religion, but he did observe some Hindu rituals culturally and respected traditions such as vegetarianism.

When Raman was four years old his father got a better job, becoming a college lecturer, and the family moved to Waltair (now Visakhapatnam).

From a very young age Raman was interested in science, reading the books his father had used as a student. As he grew older, he started borrowing mathematics and physics books from his father’s college library. Entering his teenage years, he began learning from books his father had bought when he had intended taking a master’s degree in physics.

Beginning a Degree Course, aged 14

In 1903, aged just 14, Raman set off for the great city of Madras (now Chennai) to live in a hostel and begin a bachelor’s degree at Presidency College. When Raman returned home after his first year at college, his parents were shaken by his unhealthy appearance. They set up a house for him in Madras, where he could be looked after by his grandparents.

Raman was enormously enthusiastic about science. On vacations he would demonstrate experiments to his younger brothers and sisters.

He completed his degree in 1904, winning medals in physics and English. His British lecturers encouraged him to study for a master’s degree in the United Kingdom. Madras’s civil surgeon, however, told him that his health was not robust enough to withstand the British climate; he advised Raman to stay in India.

This was probably excellent advice. The brilliant mathematician Srinivasa Ramanujan, born just a year before Raman, traveled from Madras to work at the University of Cambridge in 1914. Although this led to the creation of some exceptional mathematics, it had a severe impact on Ramanujan’s health.

Nobel Prize Winner Mistakes 18-year Old Raman for a Professor of Physics

Raman was awarded a scholarship and he remained at Presidency College to study for his master’s degree. His outstanding potential was recognized, and he was given unlimited access to the laboratories, where he pursued investigations of his own design.

In November 1906, aged 18, Raman had his first academic paper published. He had initially given it to one of his professors to read, but the professor had not bothered. Raman sent his paper directly to Philosophical Magazine and it was accepted. Its title was Unsymmetrical diffraction-bands due to a rectangular aperture: it was about the behavior of light.

Following the publication of his second paper in Philosophical Magazine, Raman received a letter from Lord Rayleigh, the eminent British physicist. Rayleigh, unaware that Raman was just a teenage student, sent his letter to “Professor Raman.”

In 1907, aged 19, Raman graduated with a master’s degree in physics, awarded with the highest distinction.

Full-time Government Administrator, Part-time Scientist

Although Raman was intent upon a scientific career, his brother persuaded him to take the civil service exams. Civil service jobs were highly paid and Raman’s family was deeply in debt.

For 10 years Raman worked as a civil servant in the Indian Finance Department in Calcutta (now Kolkata), rising quickly to a senior position. In his free time he carried out research into the physics of stringed instruments and drums. He did this work at the Indian Association for the Cultivation of Science (IACS).

The IACS had been in a state of hibernation until Raman stumbled upon it and set about reviving it. In addition to his research work, Raman gave public lectures in Calcutta popularizing science.

At Last, Full-time Science

Raman’s part-time research work and his lectures were impressive, establishing his reputation as a highly talented physicist. In 1917, the University of Calcutta sought him out and offered him the Palit Chair of Physics. Although it meant a substantial cut in pay, Raman, now aged 28, accepted – the prospect of devoting all of his time to science was worth more to him than money.

Although it was a research professorship, Raman also chose to give lecture courses: he was an exciting lecturer and he inspired his students.

The Raman Effect

Raman and Rayleigh Scattering

Lord Rayleigh, who had believed the teenage Raman’s papers were the work of a professor, had been one of the great physicists of his day. He had won the 1904 Nobel Prize in Physics.

His importance to Raman’s story is that Rayleigh had been the first to explain why the sky is blue. He had then explained the sea’s color by saying it was simply a reflection of the sky’s color.

One day, in the summer of 1921, Raman was on the deck of a ship in the Mediterranean Sea en route to the Congress of Universities of the British Empire at Oxford. He looked at the beautiful blue color of the Mediterranean Sea and began to doubt Rayleigh’s explanation of its color.

Rayleigh had correctly explained that the sky looks blue because of a phenomenon now called Rayleigh scattering.

Rayleigh scattering

An approximate representation of Rayleigh scattering in Earth’s atmosphere.

If Earth had no atmosphere, anyone who happened to be around in such circumstances would see a white sun and a black sky. However, this is not what we see, because sunlight interacts with the gases in Earth’s atmosphere.

Rather than coming straight to our eyes from the sun, sunlight is scattered in all directions by the atmosphere. Blue light is scattered most, meaning that it comes to our eyes from everywhere in the sky, therefore the sky looks blue. Yellow and red light are scattered least, so we usually see a yellow sun, and sometimes a red sun.

Rayleigh scattering is elastic. This means that photons of light lose no energy when they interact with gas molecules. The light, therefore, stays the same color.

Raman Discovers that the Sea Scatters Light

When he sailed back to India in September 1921 Raman, an indefatigable scientist, had with him some simple physics apparatus: a prism, a miniature spectroscope, and a diffraction grating. He used these to study the sky and the sea and concluded that the sea was scattering light.

Hence when Rayleigh said the sea’s color is simply a reflection of the sky’s color, he was not wholly correct. Raman reported his findings in a letter to the journal Nature.

When he returned to his laboratory, Raman and his students began an exhaustive program of research into light scattering.

Compton Demonstrates Inelastic Scattering

In 1923, Arthur Compton in St. Louis, USA published exciting new work showing that X-rays can lose energy when they interact with electrons. The X-rays donate some of their energy to electrons, then move on carrying less energy. In other words, Compton demonstrated that inelastic scattering is possible.

Compton received the 1927 Nobel Prize in Physics for this discovery, which became known as the Compton effect.

The significance of the Compton effect is that in classical electrodynamics the scattering of X-rays and other electromagnetic radiation must always be elastic. Compton’s results agreed with quantum theory rather than classical theory.

Compton’s inelastic scattering caused X-ray wavelengths to increase. If inelastic scattering and hence longer wavelengths were possible for visible light, then the light’s color would change.

The Raman Effect

Raman and his students continued researching light scattering in gases, liquids, and solids.

They used monochromatic light – sunlight that had been filtered to leave only a single color – and found that a variety of different liquids – sixty of them – did indeed change the color of the light. They first observed this in April 1923, but very weakly.

In 1927, they found a particularly strong color change in light scattered by glycerol (then called glycerine):

C. V. Raman“…the highly interesting result that the colour of sunlight scattered in a highly purified sample of glycerine was a brilliant green instead of the usual blue.”

C. V. Raman: Physicist
Nobel Lecture, 1930
 

Raman’s team observed the effect in gases, crystals, and glass. The effect might have been mistaken for fluorescence, another phenomenon in which light has its color changed, but in Raman’s work the light scattered by liquids was polarized, which ruled out fluorescence.

What came to be known as the Raman effect – a color change accompanied by polarization – had never been seen before. The inelastic scattering at its heart was a further, very strong, confirmation of quantum theory.

Approximate Representation of the Raman Effect

Raman effect

(A) Blue light approaches a molecule, and then (B) Lower energy green light leaves the molecule. This is inelastic scattering: the light has given some of its energy to the molecule, causing it to vibrate more strongly.

The Raman effect is a very small effect compared with Rayleigh scattering. Only about 1 in ten million photons undergoes inelastic scattering.

Raman and his colleague K.S. Krishnan reported their discovery in March 1928 in Nature.

Raman was awarded the 1930 Nobel Prize in Physics for “work on the scattering of light and for the discovery of the effect named after him.”

Robert W. Wood“It appears to me that this very beautiful discovery which resulted from Raman’s long and patient study of the phenomenon of light scattering is one of the best convincing proofs of the quantum theory.”

Robert W. Wood: Physicist
1928
 
Niels Bohr“[The Raman effect], whose explanation agrees so well with quantum theory, will undoubtedly become a vital source in growing our knowledge of the states of atoms or molecules in transitions, between which their characteristic spectra are emitted.”

Niels Bohr, Physicist
1929
 

Raman Spectroscopy

Raman showed that the energy of photons scattered inelastically serves as a ‘fingerprint’ for the substance the light is scattered from. As a result of this, Raman spectroscopy is now commonly used in chemical laboratories all over the world to identify substances. It is also used in medicine to investigate living cells and tissues – even detecting cancers – without causing harm. Laser light rather than sunlight is used as the source of photons.

The Photon’s Spin

In 1932, Raman and his student Suri Bhagavantam discovered that photons of light carry angular momentum – in quantum terms, photons possess a property called spin.

Light and other forms of electromagnetic radiation pass their angular momentum to atoms that absorb them.

Some Personal Details and the End

Raman married Lokasundari Ammal in 1907. The couple had two sons: Radhakrishnan, who became a distinguished astrophysicist, and Chandrasekhar.

Raman was knighted in 1929 for his discovery of the Raman Effect, becoming Sir Chandrasekhara Venkata Raman.

Raman’s Nobel Prize winning work was initially inspired by observations he made on a sea voyage. Coincidentally, it was on a sea voyage that another Indian Nobel Prize winner, Subrahmanyan Chandrasekhar, actually carried out most of his Nobel Prize winning work. And, even more coincidentally, C.V. Raman was Chandrasekhar’s uncle!

Raman had supreme confidence in his own ability. When the Palit Chair of Physics was endowed at the University of Calcutta, one of the conditions was that the holder would carry out research in other countries to increase Indian expertise. Raman refused to do this. He said that scientists should come from other countries to learn from him. He was so sure he would win the 1930 Nobel Prize that he booked tickets to Sweden four months before the winner was announced.

In 1933, Raman became the first Indian director of the Indian Institute of Science in Bangalore. In 1947, he became independent India’s first National Professor. In 1948, he founded the Raman Research Institute in Bangalore, where he worked until the end of his life.

Raman was suspicious of governments playing any role in fundamental science, refusing government funding for his work:

C. V. Raman“I strongly believe that fundamental science cannot be driven by instructional, industrial and government or military pressures. This was the reason why I decided, as far as possible, not to accept money from the government.”

C. V. Raman: Physicist
1970
 

Chandrasekhara Venkata Raman died, aged 82, of heart disease on November 21, 1970 in Bangalore, India.

Advertisements

Author of this page: The Doc
Images digitally enhanced and colorized by this website. © All rights reserved.

Cite this Page

Please use the following MLA compliant citation:

"C. V. Raman." Famous Scientists. famousscientists.org. 30 Jun. 2016. Web.  
<www.famousscientists.org/c-v-raman/>.

Published by FamousScientists.org

Further Reading
C. V. Raman
The Colour of the Sea
Nature Vol. 108, pp367-367, 17 November 1921

C. V. Raman and K. S. Krishnan
A New Type of Secondary Radiation
Nature Vol. 121, pp501-502, 31 March 1921

C. V. Raman and S. Bhagavantam
Experimental proof of the spin of the photon
Indian J. Phys. Vol. 6 pp353-366, 1931

G. Venkataraman
Raman and His Effect
Universities Press, 1995

Uma Parameswaran
C. V. Raman: A Biography
Penguin Books India, 2011

More from FamousScientists.org:
  • obert-bunsen
    Robert Bunsen
  • theodor schwann
    Theodor Schwann
  • rudolf virchow
    Rudolf Virchow
  • polly matzinger
    Polly Matzinger
Advertisements

Search Famous Scientists

Scientist of the Week

  • Linda Buck: Discovered how we smell things

Recent Scientists of the Week

  • Jan Ingenhousz: Discovered photosynthesis
  • Barry Marshall: Overturned the Medical Establishment
  • Linus Pauling: Maverick Giant of Chemistry
  • William Röntgen: The Discovery of X-rays
  • Howard Florey: Brought penicillin to the world
  • Henrietta Leavitt: The key to the size of the universe
  • Archimedes: A mind beyond his time
  • Stanley Milgram: The infamous Obedience Experiments
  • C. V. Raman: Color change allows harm-free health check of living cells
  • Rosalind Franklin: Shape-shifting DNA
  • Robert Boyle: A new science is born: chemistry
  • Carl Woese: Rewrote Earth’s history of life
  • Alfred Wegener: Shunned after he discovered that continents move
  • Henri Poincaré: Is the solar system stable?
  • Polly Matzinger: The dog whisperer who rewrote our immune system’s rules
  • Otto Guericke: In the 1600s found that space is a vacuum
  • Alister Hardy: Aquatic ape theory: our species evolved in water
  • Elizebeth Friedman: Became the world’s most famous codebreaker
  • Evangelista Torricelli: We live at the bottom of a tremendously heavy sea of air
  • Eudoxus: The first mathematical model of the universe
  • James Black: Revolutionized drug design with the Beta-blocker
  • Inge Lehmann: Discovered our planet’s solid inner core
  • Chen-Ning Yang: Shattered a fundamental belief of physicists
  • Robert Hooke: Unveiled the spectacular microscopic world
  • Barbara McClintock: A Nobel Prize after years of rejection
  • Pythagoras: The cult of numbers and the need for proof
  • J. J. Thomson: Discovered the electron
  • Johannes Kepler: Solved the mystery of the planets
  • Dmitri Mendeleev: Discovered 8 new chemical elements by thinking
  • Maurice Hilleman: Record breaking inventor of over 40 vaccines
  • Marie Curie: Won – uniquely – both the chemistry & physics Nobel Prizes
  • Jacques Cousteau: Marine pioneer, inventor, Oscar winner
  • Niels Bohr: Founded the bizarre science of quantum mechanics
  • Srinivasa Ramanujan: Untrained genius of mathematics
  • Milutin Milankovic: Proved Earth’s climate is regulated by its orbit
  • Antoine Lavoisier: The giant of chemistry who was executed
  • Emmy Noether: The greatest of female mathematicians, she unlocked a secret of the universe
  • Wilder Penfield: Pioneer of brain surgery; mapped the brain’s functions
  • Charles Nicolle: Eradicated typhus epidemics
  • Samuel Morse: The telegraph and Morse code
  • Jane Goodall: Major discoveries in chimpanzee behavior
  • John Philoponus: 6th century anticipation of Galileo and Newton
  • William Perkin: Youthful curiosity brought the color purple to all
  • Democritus: Atomic theory BC and a universe of diverse inhabited worlds
  • Susumu Tonegawa: Discovered how our bodies make millions of different antibodies
  • Cecilia Payne: Discovered that stars are almost entirely hydrogen and helium

Top 100 Scientists

  • Our Top 100 Scientists

Our Most Popular Scientists

  • Astronomers
  • Biologists & Health Scientists
  • Chemists
  • Geologists and Paleontologists
  • Mathematicians
  • Physicists
  • Scientists in Ancient Times

List of Scientists

  • Alphabetical List

Recent Posts

  • Perfect Numbers and our Tiny Universe
  • What Happens when the Universe chooses its own Units?
  • Hipparchus and the 2000 Year-Old Clue
  • Darwin Pleaded for Cheaper Origin of Species
  • You Will Die For Showing I’m Wrong!
  • Getting Through Hard Times – The Triumph of Stoic Philosophy
  • Johannes Kepler, God, and the Solar System
  • Charles Babbage and the Vengeance of Organ-Grinders
  • Howard Robertson – the Man who Proved Einstein Wrong
  • Susskind, Alice, and Wave-Particle Gullibility




Alphabetical List of Scientists

Louis Agassiz | Maria Gaetana Agnesi | Al-BattaniAbu Nasr Al-Farabi | Alhazen | Jim Al-Khalili | Muhammad ibn Musa al-Khwarizmi | Mihailo Petrovic Alas | Angel Alcala | Salim Ali | Luis Alvarez | Andre Marie Ampère | Anaximander | Carl Anderson | Mary Anning | Virginia Apgar | Archimedes | Agnes Arber | Aristarchus | Aristotle | Svante Arrhenius | Oswald Avery | Amedeo Avogadro | Avicenna

Charles Babbage | Francis Bacon | Alexander Bain | John Logie Baird | Joseph Banks | Ramon Barba | John Bardeen | Charles Barkla | Ibn Battuta | William Bayliss | George Beadle | Arnold Orville Beckman | Henri Becquerel | Emil Adolf Behring | Alexander Graham Bell | Emile Berliner | Claude Bernard | Timothy John Berners-Lee | Daniel Bernoulli | Jacob Berzelius | Henry Bessemer | Hans Bethe | Homi Jehangir Bhabha | Alfred Binet | Clarence Birdseye | Kristian Birkeland | James Black | Elizabeth Blackwell | Alfred Blalock | Katharine Burr Blodgett | Franz Boas | David Bohm | Aage Bohr | Niels Bohr | Ludwig Boltzmann | Max Born | Carl Bosch | Robert Bosch | Jagadish Chandra Bose | Satyendra Nath Bose | Walther Wilhelm Georg Bothe | Robert Boyle | Lawrence Bragg | Tycho Brahe | Brahmagupta | Hennig Brand | Georg Brandt | Wernher Von Braun | J Harlen Bretz | Louis de Broglie | Alexander Brongniart | Robert Brown | Michael E. Brown | Lester R. Brown | Eduard Buchner | Linda Buck | William Buckland | Georges-Louis Leclerc, Comte de Buffon | Robert Bunsen | Luther Burbank | Jocelyn Bell Burnell | Macfarlane Burnet | Thomas Burnet

Benjamin Cabrera | Santiago Ramon y Cajal | Rachel Carson | George Washington Carver | Henry Cavendish | Anders Celsius | James Chadwick | Subrahmanyan Chandrasekhar | Erwin Chargaff | Noam Chomsky | Steven Chu | Leland Clark | John Cockcroft | Arthur Compton | Nicolaus Copernicus | Gerty Theresa Cori | Charles-Augustin de Coulomb | Jacques Cousteau | Brian Cox | Francis Crick | James Croll | Nicholas Culpeper | Marie Curie | Pierre Curie | Georges Cuvier | Adalbert Czerny

Gottlieb Daimler | John Dalton | James Dwight Dana | Charles Darwin | Humphry Davy | Peter Debye | Max Delbruck | Jean Andre Deluc | Democritus | René Descartes | Rudolf Christian Karl Diesel | Diophantus | Paul Dirac | Prokop Divis | Theodosius Dobzhansky | Frank Drake | K. Eric Drexler

John Eccles | Arthur Eddington | Thomas Edison | Paul Ehrlich | Albert Einstein | Gertrude Elion | Empedocles | Eratosthenes | Euclid | Eudoxus | Leonhard Euler

Michael Faraday | Pierre de Fermat | Enrico Fermi | Richard Feynman | Fibonacci – Leonardo of Pisa | Emil Fischer | Ronald Fisher | Alexander Fleming | John Ambrose Fleming | Howard Florey | Henry Ford | Lee De Forest | Dian Fossey | Leon Foucault | Benjamin Franklin | Rosalind Franklin | Sigmund Freud | Elizebeth Smith Friedman

Galen | Galileo Galilei | Francis Galton | Luigi Galvani | George Gamow | Martin Gardner | Carl Friedrich Gauss | Murray Gell-Mann | Sophie Germain | Willard Gibbs | William Gilbert | Sheldon Lee Glashow | Robert Goddard | Maria Goeppert-Mayer | Thomas Gold | Jane Goodall | Stephen Jay Gould | Otto von Guericke

Fritz Haber | Ernst Haeckel | Otto Hahn | Albrecht von Haller | Edmund Halley | Alister Hardy | Thomas Harriot | William Harvey | Stephen Hawking | Otto Haxel | Werner Heisenberg | Hermann von Helmholtz | Jan Baptist von Helmont | Joseph Henry | Caroline Herschel | John Herschel | William Herschel | Gustav Ludwig Hertz | Heinrich Hertz | Karl F. Herzfeld | George de Hevesy | Antony Hewish | David Hilbert | Maurice Hilleman | Hipparchus | Hippocrates | Shintaro Hirase | Dorothy Hodgkin | Robert Hooke | Frederick Gowland Hopkins | William Hopkins | Grace Murray Hopper | Frank Hornby | Jack Horner | Bernardo Houssay | Fred Hoyle | Edwin Hubble | Alexander von Humboldt | Zora Neale Hurston | James Hutton | Christiaan Huygens | Hypatia

Ernesto Illy | Jan Ingenhousz | Ernst Ising | Keisuke Ito

Mae Carol Jemison | Edward Jenner | J. Hans D. Jensen | Irene Joliot-Curie | James Prescott Joule | Percy Lavon Julian

Michio Kaku | Heike Kamerlingh Onnes | Pyotr Kapitsa | Friedrich August Kekulé | Frances Kelsey | Pearl Kendrick | Johannes Kepler | Abdul Qadeer Khan | Omar Khayyam | Alfred Kinsey | Gustav Kirchoff | Martin Klaproth | Robert Koch | Emil Kraepelin | Thomas Kuhn | Stephanie Kwolek

Joseph-Louis Lagrange | Jean-Baptiste Lamarck | Hedy Lamarr | Edwin Herbert Land | Karl Landsteiner | Pierre-Simon Laplace | Max von Laue | Antoine Lavoisier | Ernest Lawrence | Henrietta Leavitt | Antonie van Leeuwenhoek | Inge Lehmann | Gottfried Leibniz | Georges Lemaître | Leonardo da Vinci | Niccolo Leoniceno | Aldo Leopold | Rita Levi-Montalcini | Claude Levi-Strauss | Willard Frank Libby | Justus von Liebig | Carolus Linnaeus | Joseph Lister | John Locke | Hendrik Antoon Lorentz | Konrad Lorenz | Ada Lovelace | Percival Lowell | Lucretius | Charles Lyell | Trofim Lysenko

Ernst Mach | Marcello Malpighi | Jane Marcet | Guglielmo Marconi | Lynn Margulis | Barry Marshall | Polly Matzinger | Matthew Maury | James Clerk Maxwell | Ernst Mayr | Barbara McClintock | Lise Meitner | Gregor Mendel | Dmitri Mendeleev | Franz Mesmer | Antonio Meucci | John Michell | Albert Abraham Michelson | Thomas Midgeley Jr. | Milutin Milankovic | Maria Mitchell | Mario Molina | Thomas Hunt Morgan | Samuel Morse | Henry Moseley

Ukichiro Nakaya | John Napier | Giulio Natta | John Needham | John von Neumann | Thomas Newcomen | Isaac Newton | Charles Nicolle | Florence Nightingale | Tim Noakes | Alfred Nobel | Emmy Noether | Christiane Nusslein-Volhard | Bill Nye

Hans Christian Oersted | Georg Ohm | J. Robert Oppenheimer | Wilhelm Ostwald | William Oughtred

Blaise Pascal | Louis Pasteur | Wolfgang Ernst Pauli | Linus Pauling | Randy Pausch | Ivan Pavlov | Cecilia Payne-Gaposchkin | Wilder Penfield | Marguerite Perey | William Perkin | John Philoponus | Jean Piaget | Philippe Pinel | Max Planck | Pliny the Elder | Henri Poincaré | Karl Popper | Beatrix Potter | Joseph Priestley | Proclus | Claudius Ptolemy | Pythagoras

Adolphe Quetelet | Harriet Quimby | Thabit ibn Qurra

C. V. Raman | Srinivasa Ramanujan | William Ramsay | John Ray | Prafulla Chandra Ray | Francesco Redi | Sally Ride | Bernhard Riemann | Wilhelm Röntgen | Hermann Rorschach | Ronald Ross | Ibn Rushd | Ernest Rutherford

Carl Sagan | Abdus Salam | Jonas Salk | Frederick Sanger | Alberto Santos-Dumont | Walter Schottky | Erwin Schrödinger | Theodor Schwann | Glenn Seaborg | Hans Selye | Charles Sherrington | Gene Shoemaker | Ernst Werner von Siemens | George Gaylord Simpson | B. F. Skinner | William Smith | Frederick Soddy | Mary Somerville | Arnold Sommerfeld | Hermann Staudinger | Nicolas Steno | Nettie Stevens | William John Swainson | Leo Szilard

Niccolo Tartaglia | Edward Teller | Nikola Tesla | Thales of Miletus | Theon of Alexandria | Benjamin Thompson | J. J. Thomson | William Thomson | Henry David Thoreau | Kip S. Thorne | Clyde Tombaugh | Susumu Tonegawa | Evangelista Torricelli | Charles Townes | Youyou Tu | Alan Turing | Neil deGrasse Tyson

Harold Urey

Craig Venter | Vladimir Vernadsky | Andreas Vesalius | Rudolf Virchow | Artturi Virtanen | Alessandro Volta

Selman Waksman | George Wald | Alfred Russel Wallace | John Wallis | Ernest Walton | James Watson | James Watt | Alfred Wegener | John Archibald Wheeler | Maurice Wilkins | Thomas Willis | E. O. Wilson | Sven Wingqvist | Sergei Winogradsky | Carl Woese | Friedrich Wöhler | Wilbur and Orville Wright | Wilhelm Wundt

Chen-Ning Yang

Ahmed Zewail

Return to top of page

Famous Scientists - Privacy - Contact - About - Content & Imagery © 2025